Gravitational Bending of Light

(attachment in essay: Relativity Replaced-Ether found around Earth)

By

Antonis N. Agathangelidis (E-mail anagath1943@gmail.com)

By doing the transformation r = 1/u, equation (2.80)* becomes:

$$\frac{d^2u}{d\varphi^2} + u = 2\alpha \left[u^2 + \left(\frac{du}{d\varphi}\right)^2 \right]$$
(2.81)*

Where $\alpha \equiv \frac{GM}{C_{\infty}^2}$ and *M* the attracting mass, equation (2.81)* represents with a good approximation a hyperbolic path for light ray:

The second member of $(2.81)^*$, in the case of the Sun, is negligible compared with the terms of the first member; thus we can write, for the moment, the second member equal to zero:

$$\frac{d^2 u_{zero}}{d\varphi^2} + u_{zero} = 0 \quad (\text{zero order equation})$$

The solution of this equation is a straight line:

 $u_{zero} = K \cdot \cos \varphi$ (zero order solution)

where K is the constant of the integration and angle φ is measured from the direction of maximum *u* or the same thing, the minimum r (i.e. for $\varphi = 0$ r = r_o = minimum and thus K=1/r_o), thus we get

$$u_{zero} = (1/r_0) \cdot \cos \varphi$$

Substituting, now the last expression for u_{zero} into the second member of our initial equation (2.81)*, it becomes:

$$\frac{d^2 u_{FIRST}}{d\varphi^2} + u_{FIRST} = \frac{2\alpha}{r_o^2} \quad \text{(first order equation)}$$

The solution of the last equation gives the first order solution of our initial equation (2.81)*:

$$u_{FIRST} = \frac{1}{r} = \frac{2\alpha}{r_o^2} + K' \cdot \cos\varphi \quad \text{(first order solution of the equation (2.81)*)}$$

This first order solution represents a conic section (hyperbola) and K' is the integration constant (to be determined): for $\phi = 0$, $r = r_o$ and thus

 $K' = \frac{1}{r_o} \left(1 - \frac{2\alpha}{r_o} \right)$; thus the first order solution becomes

$$u_{FIRST} = \frac{1}{r} = \frac{2\alpha}{r_o^2} + \frac{1}{r_o} \left(1 - \frac{2\alpha}{r_o} \right) \cdot \cos\varphi$$

This last equation gives $u_{FIRST} = 0$ or $r = \infty$ when $\varphi = \varphi_{\infty}$,

$$\cos\varphi_{\infty} = -\frac{\left(2\alpha / r_{o}\right)}{\left(1 - 2\alpha / r_{o}\right)} \approx -\frac{2\alpha}{r_{o}},$$

thus we get for $\varphi_{\infty} = \frac{\pi}{2} + \frac{2\alpha}{r_o}$.

The angle of the two asymptotes of the hyperbola minus π , gives the deflection of the light ray:

$$D = (2\varphi_{\infty} - \pi) \approx \frac{4\alpha}{r_o} \equiv \frac{4GM}{r_o C_{\infty}^2}$$
(2.82)*

(r_o is the closest distance of the path of light from the attracting central mass M).

*This numbering of relations is referred in the Text of the essay: *"Relativity Replaced- Ether found around Earth"*