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ABSTRACT

The Special Theory of Relativity takes us to two results that presently are considered “inexplicable” to many
renowned scientists, to know:

-The dilatation of time, and
-The contraction of the Lorentz Length.

The solution to these have driven the author to the development of the Undulating Relativity (UR) theory,
where the Temporal variation is due to the differences on the route of the light propagation and the lengths
are constants between two landmarks in uniform relative movement.

The Undulating Relativity provides transformations between the two landmarks that differs from the
transformations of Lorentz for: Space (x,y,z), Time (t), Speed (U), Acceleration (a), Energy (E), Momentum

(p), Force (F ), Electrical Field (E), Magnetic Field ( B), Light Frequency (Y ), Electrical Current (J ) and
“Electrical Charge” ().

From the analysis of the development of the Undulating Relativity, the following can be synthesized:

- Itis a theory with principles completely on physics;

- The transformations are linear;

- Keeps untouched the Euclidian principles;

- Considers the Galileo’s transformation distinct on each referential,

- Ties the Speed of Light and Time to a unique phenomenon;

- The Lorentz force can be attained by two distinct types of Filed Forces, and

- With the absence of the spatial contraction of Lorentz, to reach the same classical results of the special
relativity rounding is not necessary as concluded on the Doppler effect.

Both, the Undulating Relativity and the Special Relativity of Albert Einstein explain the experience of Michel-
Morley, the longitudinal and transversal Doppler effect, and supplies exactly identical formulation to:
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Relation between momentum (p) and Energy (E) E= C.\/mo2 c2+ p2 .

V.,
Relation between the electric field ( E ) and the magnetic field (B) B=—"E.
C

Biot-Savant’s formula B=——

. . . : X c?
Louis De Broglie’s wave equation (x;t)=asin2 t-— ;u=—
u \
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Along with the equations of transformations between two references of the UR, we get the invariance of
shape to Maxwell’'s equations, such as:

divE=—:; divE =0.
divB =0.
R01E=£,
It
RoB= .j+ E RoB= . E
It It

We also get the invariance of shape to the equation of wave and equation of continuity under differential
shape:
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Undulating Relativity
§ 1 Transformation to space and time

The Undulating Relativity (UR) keep the principle of the relativity and the principle of Constancy of light
speed, exactly like Albert Einstein’s Special Relativity Theory defined:

a) The laws, under which the state of physics systems are changed are the same, either when referred to a
determined system of coordinates or to any other that has uniform translation movement in relation to the
first.

b) Any ray of light moves in the resting coordinates system with a determined velocity c, that is the same,
whatever this ray is emitted by a resting body or by a body in movement (which explains the experience of
Michel-Morley).

Let's imagine first that two observers O and O’ ( in vacuum ), moving in uniform translation movement in
relation to each other, that is, the observer don’t rotate relatively to each other. In this way, the observer O
together with the axis x, y, and z of a system of a rectangle Cartesian coordinates, sees the observer O’
move with velocity v, on the positive axis X, with the respective parallel axis and sliding along with the x axis
while the O’, together with the x’, y’' and z' axis of a system of a rectangle Cartesian coordinates sees O
moving with velocity —V’, in negative direction towards the x’ axis with the respective parallel axis and sliding
along with the x’ axis. The observer O measures the time t and the O’ observer measures the time t' (t t').
Let's admit that both observers set their clocks in such a way that, when the coincidence of the origin of the
coordinated system happens t =t’ = zero.

In the instant that t =t = 0, a ray of light is projected from the common origin to both observers. After the
time interval t the observer O will natice that his ray of light had simultaneously hit the coordinates point A (X,
y, z) with the ray of the O’ observer with velocity ¢ and that the origin of the system of the O’ observer has
run the distance v t along the positive way of the x axis, concluding that:

x2+y2+zz—czt2:O 1.1

X =x-vt. 1.2
The same way after the time interval t' the O’ observer will notice that his ray of light simultaneously hit with
the observer O the coordinate point A (x',y’, z') with velocity ¢ and that the origin of the system for the
observer O has run the distance v't’ on the negative way of the axis x’, concluding that:
X?+y?+z?-c*t?=0 13
X=X"+Vvt. 1.4
Making 1.1 equal to 1.3 we have

XZ + y2 + ZZ _ C2 t2 — X,2 + y,2 + Z,2 _ C2 t,2. 1.5
Because of the symmetry y =y’ end z = Z’, that simplify 1.5 in

242, 1.6

X -c’t?=x*-c
To the observer O X’ = x — v t (1.2) that applied in 1.6 supplies

x? — ¢ t? = (x — v t)* = ¢ t'* from where

2
v=t 14V - 2 17
Cc ct
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To the observer O’ x = x’ + v' t' (1.4) that applied in 1.6 supplies

xX+v t’)2 — ¢’ t* =x? = c® t”* from where

VAR 'S
t=t'\/1+—2+ EWEE 1.8
Cc ct
Table I, transformations to the space and time
X'=X-vt 1.2 X=xX'+vt 14
y =y 1.2.1 y=Vy 14.1
z7=z 1.2.2 z=7 142
2 12 1 1
t'=t 1+V_2-2_‘2{X 17 t=t 1+V_2+2V2’|( 1.8
Cc ct Cc ct

From the equation system formed by 1.2 and 1.4 we find

vt=vtor |V|t = |V'|t' (considering t>0 e t">0) 1.9
What demonstrates the invariance of the space in the Undulatory Relatitivy.

From the equation system formed by 1.7 and 1.8 we find
v:  2vx vZoo2v'x
1+—2-—. 1+—+——=1. 1.10

c? ck c? i

Ifin 1.2 x’ = 0 then x = v t, that applied in 1.10 supplies,

2 12
\% \%
\/1- — .\/1+—2 =1. 1.11
C Cc

Ifin 1.10 x =ct and X’ = ¢ t’ then

1- Y 14Y o1 112
C C

To the observer O the principle of light speed constancy guarantees that the components ux, uy and uz of
the light speed are also constant along its axis, thus

=—=uy,—=—=Uuz 1.13

and then we can write

2 2
\/1+V__ @( - \/14,"__ 2vux. 1.14

c? ci ¢z c?

With the use of 1.7 and 1.9 and 1.14 we can write

(R v T

M Tt c? ci 2 ¢ 115

Differentiating 1.9 with constant v and V', or else, only the time varying we have

Mdt=|vidt or M , 1.16

| | dt
then dt' —dt1/l+—- ZVUX 1.17

but from 1.15 |V| +— -
V]
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Being v and v’ constants, the reazons ﬂ and ? in 1.15 must also be Constant because fo this the
\Y
. _ 2 2wx x _ dx _
differential of 1+—2 - _Zt must be equal to zero from where we conclude ? IE = UX, that is exactly
C C

the same as 1.13.

To the observer O’ the principle of Constancy of velocity of light guarantees that the components u’x’, u'y’,
and u’'z’ of velocity of light are also constant alongside its axis, thus

i:d_xzu'x’l:d_y:u'y"zzd—zzu'i’ 1.18
t' dt t' dt t' dt
and with this we can write ,
v o2v'x vZ2o2v'u'x
1+_2+T = l+—2+—2. 1.19
C ct' C C

With the use of 1.8, 1.9, and 1.19 we can write

M_L_\/“ﬁJ,Z‘/X _\/1+V_'2+M 1.20
Mot > it 2 2 |

Cc Cc
Differentiating 1.9 with v’ and v constant, that is, only the time varying we have
v _ dt

|V'|dt':|v|dt or —, 1.21
M dt
V' Vl2 2V|ulxl V|2 2V|U|X|
but from 1.20 U =\/1+—2+ >— then dt= dt'\/l+—2+ - 1.22
M c c c c
_ M t _
Being v’ and v constant the divisions M and F in 1.20 also have to be constant because of this the
VI2 ] 1 XI
differential of ,/1+—+ must be equal to zero from where we conclude — =—=U'X', that is
c? it tdt

exactly like to 1.18.

Replacing 1.14 and 1.19 in 1.10 we have

vZ  2vux V2 2v'u'X
1+— - L1+ =1, 1.23

c2 c? c? c?

To the observer O the vector position of the point A of coordinates (x,y,z) is
R=xi +yj + X, 1.24

and the vector position of the origin of the system of the observer O’ is
Ro'=vti +0j+0k Ro'=wvti . 1.25

To the observer O’, the vector position of the point A of coordinates (x',y’,z’) is
R=x'i +y'j+Zk, 1.26

and the vector position of the origin of the system of the observer O is
Ro=-vt'i +0j+0k Ro=-Vt'i. 1.27
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Due to 1.9, 1.25, and 1.27 we have, Ro'=- R'0. 1.28

As 1.24 is equal to 1.25 plus 1.26 we have

R=R0'+R' R=R- Ro'. 1.29
Applying 1.28in 1.29 we have, R=R'- R'0. 1.30
To the observer O the vector velocity of the origin of the system of the observer O’ is
dRO _ . : .
=——=vi +0j+0k v=vi. 1.31
dt
To the observer O’ the vector velocity of the origin of the system of the observer O is
dR'o : : :
V':W:-V'I +0j +0k '=-Vi . 1.32
From 1.15, 1.20, 1.31, and 1.32 we find the following relations between Vv and V'
-V
V= 1.33
VI2 2VIulXI
1+—2+ 5
Cc Cc

-V
1.34

v'= )
v 2vux
1+ 2 2
c c

Observation: in the table | the formulas 1.2, 1.2.1, and 1.2.2 are the components of the vector 1.29 and the
formulas 1.4, 1.4.1, and 1.4.2 are the components of the vector 1.30.

82 Law of velocity transformations U and U’

Differentiating 1.29 and dividing it by 1.17 we have

dR' dR- dRo' , u-v u-v
— = u= = . 2.1
t vZ  2vux Vi 2vux VK
dt, 1+ - — 1+ - —
Cc Cc Cc Cc
Differentiating 1.30 and dividing it by 1.22 we have
dR dR-dR'o u'-v' u'-v'
—= u= = - 2.2
dt I V|2 2Vlu|X| V|2 2Vlu|X| \/_
dt 1+7 + 2 1+7 + 2
Cc Cc Cc Cc
Table 2, Law of velocity transformations U and U’
L u-v u-v'
Uu=—— 2.1 U=—— 2.2
K K
U= ux- v - X = u'x'+v' 04
JK ' JK '
! ! uy ulyl
uy=—— 2.3.1 uy=— 2.4.1
JK K’
v uz _uz
Uuz=— 2.3.2 Uz=—— 2.4.2
K K
\
|V'| :ﬂ 1.15 V:u 1.20
K K
2 12 ]
\/E: ]_+V__ 2vUx 2.5 JK'= 1+V_+2VUX 2.6
c® ¢ c? c?
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Multiplying 2.1 by itself we have

v 2vVux
U1+ - ——
: u u
u'=s : 2.7
vZ  2vux
1+ 2 2
c c

If in 2.7 we make u = c then u’ = c as it is required by the principle of constancy of velocity of light.

Mulitplying 2.2 by itself we have

l\/ Vl2 2V|ulxl
u + 027
12 12

u= u €T 2.8
Vl2 2vlulxl
1+—2 + 5
Cc Cc
If in 2.8 we make u’ = c then u = c as it is required by the principle of constancy of velocity of light.
C-V
If in 2.3 we make ux = ¢ then U'X'=————————==C as it is required by the principle of constancy of
v:  2ve
1+ 2 2
Cc Cc
velocity of light.
: c+V' - : o
If in 2.4 we make u'x’ = ¢ then UX= =C as it is required by the principle of constancy of

=
+
ON‘ <,
+
o,
o

velocity of light.

Remodeling 2.7 and 2.8 we have

u
1-
2vux c?
1+—- = 2.9
Cc c u|2
1- 2
C
1 u|2
V|2 2V|u| C2
I+—+=—= = . 2.10
C C u?
1- 2
C

The direct relations between the times and velocities of two points in space can be obtained with the
equalies U'=0 Uu'xX'=0 ux=v coming from 2.1, that applied in 1.17, 1.22, 1.20, and 1.15 supply

dt—dt1/1+—- 2w — 211
V

c
2
dt=dt 1+\£—2+ 2:20 df:Lz, 2.12
1Y
C
V] V]
M= ,|2 | v :L,z , 2.13
\Y; 2v0 \;
1+ +— 1+
C C c
M:% |v-|:l2. 214
1+?- c? o c?
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Aberration of the zenith

To the observer O’ along with the star u'x’ = 0, u'y’ = ¢ and u’z’ = 0, and to the observer O along with the
Earth we have the conjunct 2.3
ux- v uy

V2
0= UX=V,C=———= Uy=¢,/1- — ,uz=0,
v: 2w C
1+ 2 2
cc C

v 2vux
14V .28 i
c c
2

2
V

u= \/ux2 + uy2 +uz? = V¥ + 01/1- — +0? = exactly as foreseen by the principle of relativity.
Cc

To the observer O the light propagates in a direction that makes an angle with the vertical axis y given by

ux \ vic
tang =— = = 2.15

uy v? V2
C\/l_ c? \/1_ c?

that is the aberration formula of the zenith in the special relativity .

If we inverted the observers we would have the conjunct 2.4

(W] ' [N 12
u'x +v u - / v
0= ux'=-v',c= y uy'=c,/1- —,uz=0,
V|2 2V|u|X| V|2 2V|(_ Vl) C
1+T+ 2 1+T+ 2
Cc Cc C Cc
2 2
Vl
ul =\/ulx|2 +u|y|2 +u|Z|2 = (_ Vl)2 + C 1_ 5 +02 =c
U C
ux' -V - Vvic

tang = 2.16

u'y' - V|2 - V|2
c\/ 1-— \/ 1-—

C Cc
that is equal to 2.15, with the negative sign indicating the contrary direction of the angles.

Fresnel's formula

Considering in 2.4, U'X'=c/n the velocity of light relativily to the water, V'=V the velocity of water in

relation to the apparatus then UX=C' will be the velocity of light relatively to the laboratory
1

, c/n+v c/n+v c Vi v 2 _ ¢ 1 V2 v
c= = = —+v 1+—2+— @—+v 1-= —t—
vi  e/n vi v n c° nc n 2 ¢ nc
1+7+72 1+7+7
Cc Cc Cc nc
Ignoring the term v? /c? we have
2
. Cc \' C vV Vv
C@—+v 1- — @ +V- —-—
n nc n n nc
and ignoring the term v?/nc we have the Fresnel’s formula
,_C VvV C 1
C=—+v- - =—+vl-— . 2.17
n n n n
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Doppler effect

12

v 2 CZtIZ

Making r?>=x*+y?+2z®> and r?=x2+y?+z? in 15 we have r?-c%?=r or

et =(r - ot (r+ct) : _ N . e V2 2vx
(r Ct) = (r ct )m replacing then r =cCt, r'=ct’ and 1.7 we find (r Ct) = (r ) l+ e
2

1 v 2vx
then E(kr - wt)= ?(k r-wt) 1+—- po where to attend the principle of relativity
C C

as C=

w_w
k™ K

we will define K'=k 1+—- 2\2/X 2.18
C ct
Resulting in the expression (kr - Wt) = (k' r-w t') symmetric and invariable between the observers.
To the observer O an expression in the formula of  (r,t) = f (kr - wt) 2.19
represents a curve that propagates in the direction of R. To the observer O’ an expression in the formula of
(rr)=f(kr-wt) 2.20

represents a curve that propates in the direction of R'.

o 2 .2
Applying in 2.18 K=—, kK'=—,1.14, 1.19, 1.23, 2.5, and 2.6 we have
'=— e =—— 2.21

that appliedin c=Yy =Yy ' supply, Y = y\/i and y = y'\/W. 2.22

Considering the relation of Planck-Einstein between energy (E) and frequency (Yy), we have to the
observer O E =hy and to the observer O'E' = hy that replaced in 2.22 supply

=EJK and E=E'VK"'. 2.23

If the observer O that sees the observer O’ moving with velocity v in a positive way to the axis x, emits
waves of frequency Y and velocity c in a positive way to the axis x then, according to 2.22 and UX=C the

\'
observer O’ will measure the waves with velocity c and frequency Y=y 1- — | 2.24
C

that is exactly the classic formula of the longitudinal Doppler effect.

If the observer O’ that sees the observer O moving with velocity —v' in the negative way of the axis x’, emits
waves of frequency Y and velocity c, then the observer O according to 2.22 and U X =-V will measure
wasves of frequency Y and velocity c in a perpendicular plane to the movement of O’ given by

= "'"/1- —, 2.25

that is exactly the formula of the transversal Doppler effect in the special relativity.
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83 Transformations of the accelerations aand a

Differentiating 2.1 and dividing it by 1.17 we have

du' du/\/_ ( )vdux/K\/R a':i+(u-v)lﬂ a1

- = V -
dt  dtJK ¢ dtVK K c? K?

Differentiating 2.2 and dividing it by 1.22 we have

du _du/VK' T _V,)iduX/K'JW a=d (yoy)Y aX -
dt  dt VK ¢z dtJVK' K' c? K'2 '
Table 3, transformations of the accelerations a and a'
a=24(u- v)lﬂ 31 a-al-(u'-v)v ax 32
K 2 K2 ' K' c? K'2 '
ax VvV ax ax VvV ax
ax=—+ux- vV)]—— ax=——- (UX+)————
K ( ) 2 KZ 3.3 K ( ) Kl2 3.4
: ay vV ax ay .,V a>(
ay=—+uy—— ay=——-uy——
y  TWaa 3.3.1 Y="¢ K 3.4.1
az=24uz 2 2 3.3.2 az= az_ '2iﬂ 3.4.2
K c? K? o K' 2 K'? o
K ' K' '
2 2 .
K =1+ Y . 200X 35 | K=1) 4 AUX 36
C C C C

From the tables 2 and 3 we can conclude that if to the observer O Ua = zero and ¢ =ux® + uy2 +uz?,

then it is also to the observer O’ U'a = zeroand ¢ =u' x'2+u' y'2+u' z'%, thus U is perpendicular to a
and U' is perpendicular to @ as the vectors theory requires.

Differentiating 1.9 with the velocities and the times changing we have, tdv+vdt=t'dv+vdt, but
considering 1.16 we have, vdt=vdt tdv=t'dv 3.7

dv _ dv . a
Where replacing 1.15 and dividing it by 1.17 we have, — ora=—. 3.8
dt  diK K

We can also replace 1.20 in 3.7 and divide it by 1.22 deducing

dv _ dv a
—=———ora=— 3.9

dt dtK' K'

The direct relations between the modules of the accelerations a and a’ of two points in space can be
obtained withthe U'=0 UX=0 ax=0 U=V UX=V coming from 2.1, that applied in 3.8 and
3.9 supply

\ a a a a
a= > = > and a= > = > - 3.10
AV \Y} \% 2V0 v
1+ 2~ 2 1- 2 1+T+ 1 2
C C C C C C

That can also be reduced from 3.1 and 3.2 if we use the same equalities
u=0 ux=0 ax=0 u=v ux=V coming from 2.1.
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§4 Transformations of the Moments  p and p'

Definedas p = m(u)u and p'= m'(u')u' , 4.1
where m(u) and (u') symbolizes the function masses of the modules of velocities U = |u| and U'= |u'| .

We will have the relations between m(u) and m'(u') and the resting mass m,, analyzing the elastic
collision in a plane between the sphere s that for the observer o moves alongside the axis y with velocity uy
= w and the sphere s’ that for the observer O’ moves alongside the axis y’ with velocity u’y’ = -w. The sphere
while observed in relative resting are identical and have the mass m,. The considered collision is symmetric
in relation to a parallel line to the axis y and y’ passing by the center of the spheres in the moment of.
Collision.

Before and after the collision the spheres have velocities observed by O and O’ according to the following
table gotten from table 2

Sphere | Observer O Observer O’

2
Before s UXs= zero, uys=w uUxXs=-v, uys=w,/1- v_z
V" ¢
V2
Collision s’ UX$=V, uys=-w,|/1- — | UXs=zero, uys=-w
c

2
After s UXS= zero, uys=-w uxs=-v, u'ys:-v_val-Vl—2
c
V2
Collision s’ UXS=V, uyS=W,|1- — uxs=zero Uys=w
c

To the observer O, the principle of conservation of moments stablishes that the moments pPX= m(u)ux and

py= m(u)uy, of the spheres s and s’ in relation to the axis x and y, remain constant before and after the
collision thus for the axis x we have

m(w/uxs2 +uys’ )uxs+ m(wluxs'2 +uys” )uxs': m(w/uxs2 +uys’ )uxs+ m(wluxs'2 +uys” )uxs',

where replacing the values of the table we have

2

2 2 2
m _|v'+ - W1/1- — v=m |V'+ W,|1- — V from where we conclude that W =W,
C C

and for the axisy

m(w/uxs2 +uys’ )uys+ m(w/uxs'2 +uys® )uys': m(w/uxs2 +uys’ )uys+ m(w/uxs'2 +uys®? )uys‘,

where replacing the values of the table we have

2 2
2 2 2 2
v l, v y\ Y
mw)w- m [V + - w,[1- —  w1- — =- mW)w+m |V’+ W,[1- — = W,1- -,
c c c c

simplifying we have

2 2
Vv \/

m(w) =m \/V2+W2 1- — 1/1- — » where when wW® 0 becomes
C C
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2 2 2
m(0)=m \/v2+02 1- 2 1= 2 m)=m(v)/1- L m(\/):_m(o)2 ,
c c c v
1- o

but m(O) is equal to the resting mass m, thus

with a relative velocity v =u m(u) =—_Tb 4.2

m(v):Lz, —
\" u
J1- " 1

u
that applied in 4.1 supplies P = m(u)u = L 4.1

u2

1--

C
With the same procedures we would have for the O’ observer
mu)=—1" 4.3

u|2
1- 2
C
ul
and p=m(u)u=—0 4.1
u'2
1- 2
Cc
o . : _ - M
Simplifying the simbology we will adopt m=miu) = > 4.2
u
1- 2
Cc
and rﬁ:rﬁ(u'):L 4.3
u:2
1-—
Cc
that simplify the momentsin p=mu and p'=m'u’. 4.1
Applying 4.2 and 4.3 in 2.9 and 2.10 we have
VARYAV D' v:  2vux
m:m\/1+—2+ . m=mJK and mM=m|1+—- " m=m/K. 4.4
c C Cc Cc

dp_d(mu)  ._do _d(mu)

Defining force as Newton we have F = E = = d—t’ with this we can define then

d dt
kinetic energy (Ek E\ ) as
E, = F.dR= M.dR: d(mu)u = (u2dm+ mudy),
0 o dt 0 0
and E' = F.dR' = d(m—"u').dR'= d(m'u').u' = (u'zdm‘+m'u'du').
0 0 0 0

Remodeling 4.2 and 4.3 and differentiating we have m?°c?- m?u® = n102c2 u?dm+ mudu= c*dm and

m'?c*- m?u'?= n10202 u'?dm+m'u'du'=c’dm', that applied in the formulas of kinetic energy
m m

supplies E, = c’dm=mc* - mc* =E- E, and E, = c’dm=mic*- mc*=E-E,, 4.5
m m

where E=mc? and E' = mc¢? 4.6
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are the total energies as in the special relativity and E_ = r‘nOC2
the resting energy.

Applying 4.6 in 4.4 we have exactly 2.23.

From 4.6, 4.2, 4.3, and 4.1 we find

|§:(:1/n'|02c;2 + p2 and E'=01/m2c2+ p'2 ,

identical relations to the Special Relativity.

Multiplying 2.1 and 2.2 by m, we get

= - nmu =mu- mv p'=p-£2v
u.z u2 u2 C
1- o2 1- o2 1- o2

mu=mu-myv

Table 4, transformations of moments p and p

2

u2 u|2 ) ul2 p_ p ) C_
1- o2 1- o2 1- o2

U E 1 EI 1
p=p- 5V 4.9 p=p-—Vv 4.10
c c
1 E 1 1 EI 1
pPX=px-—5Vv 4.11 px=p'X'+—V 4.12
c c
Py =py 4111 | py=py 4121
p'Z=pz 4,11.2 pz=pzZz 4,12.2
E=EJK 258 | E=pK 223
m=mu)=——2_ |4 m=m)=——0_ |43
u2 ulZ
o c? 1 c?
=miK | memVK z
E. =E-E 4.5 E.=E-E 45
E =mc 4.6 E'=m'c’ 4.6
E :mOCZ 4.7 E :mo(;2 4.7
E =cm,’c? + p? 48 E'=cym,’c’+ p'? 48
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Wave equation of Louis de Broglie
The observer O’ associates to a resting particle in its origin the following properties:
-resting mass mq
-time t'=t,
-Resting Energy E :moC2

moc
h h
-Wave function  =aser? Yy t with a = constant.

-Frequency Y, =

The observer O associates to a particle with velocity v the following :

-mass M= m(v) =M (from 4.2 where U =V)
V2
1-
C
-time t = b (from 1.7 with UX=V and t'=t)
CZ
E
-Energy E = = = = mc’ - (from 2.23 with uX=V and E'=E)
\'
\/1- \/ ) 72
C C
_mc?/h
-Frequency Y= Yo =E/h (from 2.22 with uX=V and y'=Y,)

g

-distancy x = vt (from 1.2 with x’ = 0)

Vv’ Vv’ X c?
-Wave function =aser? y t =aser y,/1-—t./[1-—=aser y t-a with U =—
c ¢ %

2
-Wave lenght U=y —%—%—% =% (from 4.9 with p'= p, = 0)

To go back to the O’ observer referential where U' =0  uU'X'=0, we will consider the following variables:

-distancy x = v't’ (from 1.4 with x’ = 0)
12 12

-time t =t' \/1+V—2+ 20 =t \/1+V_2 (from 1.8 with U' X =0)
Cc

2

Cc Cc
Vv'2
-frequency Y=Y, |/1+—- (from 2.22 with ux=0)
C
: V'
-velocity V= ——— (de 2.13)
Vl

that applied to the wave function supplies

Vl2 l2 l2tl
'‘=aser? y t-— =aser y, /I+— t,/1+— D R e =asergpy't'
c? c? -

butas t'=t, and y'=y, then '=

0"
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85 Transformations of the Forces F and F'

Differentiating 4.9 and dividing by 1.17 we have

= = Fr=——
dt'  dtvK dtJK c? JK dt ¢ J_

Differentiating 4.10 and dividing by 1.22 we have

dp' _ dp dE v 1 dE v. , (F u)

dp dp' de' V' 1 dE' v' 1 V'
— — F=— F-—— F=—— F-\FU )
dt VK dt VK c Jkodt ¢? JK' ( )c2
From the system formed by 5.1 and 5.2 we have

E L Fu=Fu

dt dt

that is an invariant between the observers in the Undulating .Relativity.
Table 5, transformations of the Forces F and F'

' — 1 V — 1 L} 1 L} Vl
F —W F- (F U)? 51 F __’F F'(F U )C—z 5.2
1 [ 1 V — l 1 1 1 1 VI
F'x'= W Fx- (F U)C—2 5.4 Fx = W F'x +(F U )? 55
F'y'=Fy/JK 541 | Fy=Fy'/J/K 5.5.1
F' z'= Fz/JK 542 | Fz=F z'/J/K' 5.5.2
dE _dE
dt  dt 5.3 Fu=Fu 5.3
86 Transformations of the density of charge , ' and density of current J and J'
Multiplying 2.1 and 2.2 by the density of the resting electric charge defined as =j—q we have
VO
u' u %
0 == °2 °2 u=u-v J=J-vV
\/1_ uz \/1_ uz \/1_ uz
C C Cc
L} Vl
and Ou - — Ou - - 0 = u —_ lul_ lVl J —_ Jl_ |V|
\/1' uz \/1' uz \/1' uz
C C C
Table 6, transformations of the density of charges , ' and density of current J and J'
J=J- v 6l 1J=0- v 62
JX'=JIx v 6.3 IX=JX'+ 'V 6.4
Jy=Jy 631 | Jy=Jy 6.4.1
17=J7 6.3.2 Jz=1J7 6.4.2
j= u 6.5 J= 'y 6.6
u? 6.7 i u'? 6.8
- 1- :
C C
JK 6.9 — 6.10

From the system formed by 6.1 and 6.2 we had 6.9 and 6.10.
15/126
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87 Transformation of the electric fields

E, E' and magnetic fields

B, B

Applying the forces of Lorentz F =q(E+u’ B) and F' :q(E' +u'’ B') in 5.1 and 5.2 we have

q(E'+u" B'):% q(E+ u’ B)- [q(E+ u B).u]l2
and q(E+u" B)= \/1? qE+u B)- [oE+u B ]Z_z
(E'+u" B'):% (E+ u’ B)- (E u)%

and (E+ u B):

1
Nra

, that simplified become

E+u B)- [EBU)L

C2

from

where we get the invariance of E.U=E'U" between the observers as a consequence of 5.3 and the

following components of each axis

E'xX'+u'y'B'z-u' z'B' y':i Ex+uyBz uzBy

Exuxv  Eyuyv Ezuzv

- 7.1
\/R c2 c2 c2
1
E'y+u'ZB'X-u'XB'Z=——|Ey+uzBx- uxBz 7.1.1
i ]
1
E'Z+u'XB'Yy-UyB'X=—|Ez+uxBy- uyBx 7.1.2
7 ]

Ex+uyBz usz-— E'X'+u'y'B'z'- u'z'B'y'+E XU xv +E yuyv +E zuzy 7.2
VK c? c? c?
Ey+usz—usz=i[E'y+u'z B'X-u'XB'z‘] 721

F
Ez+uxBy- UyBx=—— [E Z+U'XB'y-u'y B'X] 7.2.2
3
To the conjunct 7.1 and 7.2 we have two solutions described in the tables 7 and 8.
Table 7, transformations of the electric fields E, E' and magnetic fields B e B
Ex VUX E'X v'u' X'
E'X=—— 1- — 7.3 Ex= 1+ 7.4
JK ¢ JK c?
Ey vZ vux VBz E'y v vu'x | vB'Z
Ey=—"2 1+—-— - =2/731 Ey=—2 1+—+ + 7.4.1
YT T T Tk e e JK
Ez v vux | VBy E'Zz V2 o viu'x VvB'Y
E'z=— 1+ —= | 732 Ez=—= 1+—+ - 7.4.2
JK ¢t ¢ JK JK o2 e JK'
B'x'=Bx 7.5 Bx=B'X' 7.6
1 1 V 1 VI 1 1
B'y'= By+c—2 Ez 751 | By=B'y'- e —FEz 7.6.1
1 | - V —_ 1 1 VI 1 1
B'z'=Bz C—2Ey 752 | Bz=B'z te E'y 76.2
E'y'=EyvK 7.7 Ey=E'yJK' 78
E'z'=EzJK 11 Ez=E'ZVK 81
ux ., ux
By=- pes Ez 7.9 B 7.10
ux L ux ,
BF?EV 7.9.1 =z EY 7.10.1
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Table 8, transformations of the electric fields E, E' and magnetic fields BeB

1 \Y} 1 V'
E'xX=— Ex- \Eu]— 7.11 Ex=—— E'X'+|E'U' |- 7.12
\/? ( )CZ \/W ( )C2
EYy' = —(Ey vB2) 7111 | By= i(E' y'+Vv'B'Z') 7121
VK JK
1 1
E'Z'=——|\Ez+VvB 7112 | EzZ=——\E'Z- V'B'Y’ 7.12.2
R( y) \/W( y)
B'x'= Bx 7.13 Bx=B'x' 714
B'y'=By 7.131 | By=B'Yy' 714.1
B'z'=Bz 7132 | Bz=B'Z2' 714.2

Relation between the electric field and magnetic fi  eld

If an electric-magnetic field has to the observer O’ the naught magnetic component B'= zero and the

electric component E'. To the observer O this field is represented with both components, being the
magnetic field described by the conjunct 7.5 and has as components

VEz VE
Bx=zero, By=- —-, z:—zy, 7.15
Cc Cc
_ 1 .
that are equivalentto B=—Vv" E. 7.16
Cc

Formula of Biot-Savart

The observer O’ associates to a resting electric charge, uniformly distributed alongside its axis x' the
following electric-magnectic properties:

d
-linear density of resting electric charge | = d_)(j

-naught electric current |' = zero
-naught magnectic field B' =zero U =zero

-radial electrical field of module E' =, E'y?*+EZ?% = > £ R at any point of radius R=./y'? +z'

with the component E'X'= zero.

To the observer O it relates to an electric charge uniformly distributed alongside its axis with velocity UX=V
to wich it associates the following electric-magnectic properties:

-linear density of the electric charge = —>— (from 6.7 with u = v)
V2
1--
C
. oV
-electric current | = v =
2
\Y
1- -
Cc
-radial electrical field of module E =——— (according to the conjuncts 7.3 and 7.5 with
V2
1-
C

B'=zero U =zeroand UX=V)
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-magnetic  field of  components Bx= zero, By=-—-, Bz=—= and  module
Cc Cc
VE_v F Y 1
B=—== == o =N where M, =——, being in the vectorial form
c° c vi C v 2 R 2pR .C
1- 2 1- 2
Cc C
I
B:nl;U 7.17
2pR

where U is a unitary vector perpendicular to the electrical field E and tangent to the circumference that

passes by the point of radius R=+/y? +Z® because from the conjunct 7.4 and 7.6 E.B = zero.

88 Transformations of the differential operators

Table 9, differential operators

1x  fx c2qt ' Ix qIx c?qt '
Ty Ty Ty Ty B
2" 1z |1z 17 -
2 1 12 1t 89.4

lzli+i 1+V_2_V_2X 1 8.3 1:_ v ﬂ + 1 +V_2+¥ l

i JKIx JK =~ ¢ ci 1t 1M  JK Ix JK' cz it 9t
From the system formed by 8.1, 8.2, 8.3, and 8.4 and with 1.15 and 1.20 we only find the solutions

ﬂ X/t ﬂ 0 and i X it T 8.5
‘Hx c? ‘Ht X c ‘Ht

From where we conclude that only the functions (2.19) and ' (2.20) that supply the conditions
ﬂ_ X_/tﬂ__o dﬂ +X£tﬂ =o, 8.6
x c* Tt Ix c* 1t

can represent the propagation with velocity ¢ in the Undulating Relativity indicating that the field propagates
with definite velocity and without distortion being applied to 1.13 and 1.18. Because of symmetry we can also
write to the other axis

LS 7.5 B D25 PN DN 715 R, I 155 B o7
‘Hy c® Tt 1\ c It z c? 9t 1z c It
From the transformations of space and time of the Undulatory Relativity we get to Jacob’s theorem
1. Vux 1+ v'u'x'
_Txy ) T 2 o lxyzt) T ¢l
J= = and J'= = , 8.8
1(x.y,z.1) JK 1(x .y z't') JK*

variables with ux and u’x’ as a consequence of the principle of contancy of the light velocity but are equal ais
J =J' and will be equaltoone J =J'=1 when UX=U'X'=C.
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Invariance of the wave equation

The wave equation to the observer O’ is

1° 1° 7”7 17
ﬂx'z +ﬂy'2 +ﬂz'2 ?ﬂt'z = zero

where applying to the formulas of tables 9 and 1.13 we get
2 2 2 2 2
% 1 v 1 VS VUX

ﬂ+ Al +‘"2+‘”2 T t—-— ik = zero

ix ¢t 2 9z \/_‘Hx\/f ¢ ¢ Tt

from where we find

Tk L 10 20 2 4wl v v 2T

6

Ko 4K g . =1 &
2 2ot qt? craxt cf ™t ¢t It ¢ M2 c®Mm>  c®  qt?

ﬁ‘ﬂ_z Y 17?2 28 1° 2v2ux 1? 2v2‘ﬂ_2 2vux‘|T_2+2v3ux‘|T vZux® ﬂ ﬁﬂ—zzzero
2qx® 2 xt ¢ ﬂxﬂt ¢t Ot ¢t 2 ¢t 2 2 c® 2 b gt

that simplifying supplies
K‘”—2+Kﬂ—2+K£-iﬂ—2- 2%ux 1° v 17 VvP TP 2vux‘ﬂ LS ﬂ_ Jero
x? fy? 22 c*fM* ' x|t cx* ct® ¢t ot qt?

where reordering the terms we find

K 1? ‘K 1? ‘K 12 1 v 2vux 1 7% v* 2 L 2ux 12 Lo ‘IT2 _ 8.9
2 w2 w2 2T T 2 _2_ 7 w2 § = 2€10 '
ix? fy? 1z C C > ¢ Tx c® Ixt ¢t qt?

2 2 2
but from 8.5 and 1.13 we havel+x—/tl o l+%1 = l +2ux 1 +UX ﬂ — = Zero
ix c? 1t Ix c? |t ™ c? It c* qt?
” 1", 1" 17
that applied in 8.9 supplies the wave equation to the observer O — + —+—- —— =zero. 8.10
™ y? 122 i’

To return to the referential of the observer O’ we will apply 8.10 to the formulas of tables 9 and 1.18, getting

T v g9 ¢ ¢ 1 VAR | 1 vZoviux ’
—_——— + + -—= - 1+— — =2Zero

Ix 2t  fy? 22 ¢ \/ﬁ‘ﬂx'-k\/?' c? cz 1t

from where we find
2 2 2 2
PRI SRR ES
R AR I -
c® Mt?* ¢ X? c? ‘HXﬂt' ct
v3ulxl 1'[2 vzulxz ﬂz v4 ﬂz B
S T RO - zero
that simplifying supplies
T|'2 ﬂz +K. ﬂz _iﬂz ZVIZUIXI ﬂz _\/2 ﬂz _v_z T|'2 ] 2\/ulxl T|'2 _v?ulxv2 ﬂz B
2 C4 ﬂtlz C4 ﬂtlz C6 ﬂtlz

VA YA TP S A AN
X o T ¢ I c f? g
o, 2%ux 1P T vux T

- 4

@ It ¢t T o . ¢t fr?

KI 2 +KI 2 2 2 4 2 2
X W 1z c” It c X' c X
where reordering the terms we find
K’ 12 LK 1° +K' 1° 1+"2 2/ u X 1 7 v f° +2u'x' 1° +u'x' 1° _
2 2 2 -t 2 2 2 2 2 . 4 =z -~ Z€ro
X mw 1z C C c’ It c® X c® XMt c’ 1t
but from 8.5 and 1.18 we have
'] 2 2 1 2 1 2 2
x t X 2u' X X
T xXes T,uxy _ T  2ux ¥ ,u 1 = zero

=0 _ _ =
‘ﬂx ¢’ Tt Ix c qt ™2 c® Xm c* fit?
that replaced in the reordered equation supplies the wave equation to the observer O
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Invariance of the Continuity equation

The continuity equation in the differential form to the observer O’ is

T 1R =zero 11117+1UX Ly, Tz

- - : — = Zero 8.11
it > vy 1z
where replacing the formulas of tables 6, 9, and 1.13 we get
2
v 1 i +V2_V_L;X1 \/E‘F l+l21 (JX— V)+M+T[—JZ:Z€I’O
Kix JK & @ 1 x c2 9t Ty 1z
making the operations we find
2
LA V_ﬂ__VUXﬂ_+ﬂJX+1ﬂJX_Vﬂ VT Wy Tz
Ix It 2 2 M Ix 2 M Ix 29 Ty 9z
that simplifying supplies
T ooved  Wx, v X Ty 9dz_ o
ft M Ix M Ty 9z
where applying JX=UX with ux constant we get
‘ﬂ__V_L;>(ﬂ_+M+lzﬂ(rux)+ﬂJy+ﬂJZ:Zero ﬂ—+ﬂ‘]X+ﬂ‘]y+ﬂ‘]Z:zero 8.12
it ¢t Ix ¢ Tt Ty 1z it Ix Ty 1z

that is the continuity equation in the differential form to the observer O

To get again the continuity equation in the differential form to the observer O’ we will replace the formulas of
tables 6, 9, and 1.18 in 8.12 getting

v 1 v ovu'x 7 v 1 1y 1z
- + 1+—+ £ UK+ - = (Ix+ v ——— = zero
JKIx KT e ¢f Tt Tx ¢ 1t ( ) Ty 1z
making the operations we find
l2 L} 1 1 1 L} 1 1 1 1 1 1 1 1 1
AR +‘ﬂ_+v_‘|] +vux‘ﬂ +ﬂJX_LﬂJX+Vﬂ _v_‘ﬂ ‘HJy ‘HJ — sero
Ix qt c* Mt c> Mt Ix c* qt Ix ¢ Ty 12
that simplifying supplies
1 +vux‘ﬂ +ﬂJx_iﬂJx+ﬂJy+‘ﬂJzzzero
mw ¢ 1 x 1w Ty 1z
where applying J'X'= "u'X' with u'x’ constant we get
T +vu2x‘ﬂ +ﬂJx_izﬂ(rux)+ﬂJy+ﬂJz:Zero 1,1 10y 102 _
1t cc Tt X' ¢ 1t Ty’ 17 1t 1x Ty 17

that is the continuity equation in the differential form to the observer O
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Invariance of Maxwell's equations

That in the differential form are written this way

With electrical charge

To the observer O To the observer O’
fEx Yy 9fYEz _r fEEX 9YEY 9JEZ _r'
+ + =— + + =
% Ty Tz e 1'% Ty w2 e .
Bx 9By 9Bz _ 1Bx 9YBY 9YBZ _
+ + =0 + + =0
X 1y 1 8.15 X W 1 8.16
ﬂEy_ ﬂEXz_ﬂBZ 617 ‘ﬂE'y'_ ﬂE')(z_ﬂB'i 618
x Ty it ' ix iy It '
ﬂEZ_ ﬂEy:_ﬂBX 819 ﬂE'Z'_ ﬂE'y':_ﬂB')( 8.20
Iy 1z it ' 1% 1z i '
ﬂEX_ ﬂEZ:_ﬂBy ﬂE'X'_ ﬂE'Z':_ﬂB'y'
1z 1 Tt 8.21 1 T it 8.22
By 9Bx Ez By fBX , E'Z
— - —=mJz+tem — — - ——=mJ'Ztem ——
A N e I A
1Bz 9By EX 1Bz 9YBY _ , JE' X
=2 2 =mIx+e m — L. Bl oI xX+e,m——
P A
fBx_ Bz _ TEy TBX BZ _ - yovem TEY
2 X m,Jy+e,m, P 8.27 = ™ mJ'y +e,;m, e 8.28
Without electrical charge r =r'=zeroand J =J' = zero
To the observer O To the observer O’
fEx 9YEy 9Ez_ fEX fEY 9YEZ _
+ + =0 + + =0
X 1y 1 8.29 > W 1 8.30
Bx 9By 9Bz _ iBx 9YBY 9BZ _
+ + =0 + + =0
X 1y 1 8.31 > . W 8.32
ﬂEy_ ﬂEXz_ﬂBZ 633 ‘ﬂE'y‘_ JE X :_ﬂB'Z 834
x Ty it ' ix % 1t '
ﬂEZ_ ﬂEyz_ﬂBX 835 ﬂE‘Z_ﬂE'y':_ﬂB'X 8.36
y 1z 1t ' % |74 qt '
ﬂEX_ ﬂEZ:_ﬂBy ﬂE')(_ﬂE'Z':_ﬂB'y'
1z x Tt 8.37 1 1 it 8.38
By 9Bx fEz By fBX JE'Z
_ . = e _ _ . = e —_
x 1y 5y T 8.39 > W 5y Tt 8.40
Bz 1By _ . ., JEX Bz MBY ., IEX
1y 1z e,m, 1t 8.41 W 2 €, Tt 8.42
Bx_1Bz_, . TEy fBx 8z _, . TEY
1z X .M, T 8.43 7 1 o it 8.44
1
e,m =C—2 8.45
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We demonstrate the invariance of the Law of Gauss in the differential form that for the observer O’ is

E' X E' EZ
TEX_TEY | r 8.14
X % 1z e

where replacing the formulas from the tables 6, 7, 9, and 1.18, and considering u'x’ constant, we get

T,v T EX vux 1 Ey 1+v2 vux VBz

-_ — 1- —= +— - - +
w R VK WK & & K
LT Ez v2 vux | VBy _ N
"9z Ik & JK o
V2
making the products, summing and subtracting the term ———, we find

c? 1x

TEx, v TEX_VuxfEx_ vzux‘ﬂEx+‘ﬂEy+v_2‘ﬂEy_ vuxfEy viBz
Ix ¢t ¢ Ix ¢ M Ty Y &y W
+‘|1Ez+ﬁ‘ﬂEz_ vux‘HEz+v‘HBy+ﬁ‘ﬂEx_ Vi IEx_ K

fz 292 ¢ Mz Yz ¢ X c® Ix e

that reordering results
v? ‘ﬂEx ux TEx ‘ﬂBz fiBy 1 Ex + ‘ﬂEx+‘ﬂEy+‘ﬂEz +v2 vux _ K

-2 =2 - 1+4—- == ==

c® x c* ft v 9z c* 1t ix Ty 1z c

where the first parentheses is 8.5 and because of this equal to zero , the second blank is equal to

- v(m,Jx) =

0
vZ  vux Vv
2 e, ¢ ¢ e, c° e C

‘ﬂEx+ ‘|1Ey+ fEz 1+ VuX
Ix v 1z c® ¢
TEx  fEy TEz_r

from where we get =— 8.13

™x Ty 9z e

that is the Law of Gauss in the differential form to the observer O.

To make the inverse we will replace in 8.13 the formulas of the tables 6, 7, 9, and 1.13, and considering ux
constant, we get

1 ] 1 2 ] 1
T v T EX 1+V'UX' 1 Ey'l\/+\/ux' +V'BZ

x Mt VK ¢y JK ¢ JK
(I EZ g vP vux VBY W
K JK* c? JK' .
2 qE'X
making the products, adding and subtracting the term _zﬂ—)( we get
Cc

® ¢t X ¢t It ¥ WV & W
1 (- 1 12 1 T | 1 ] [ 2 1 2 " V4l
LVIBZ EZ VIYEZ VUuXfEZ VIBY VIIEX V2EX _ 'K

Ty Tz ¢ 12 S 4 1z ¢ X & X e

that reordering results in

1 1 1 gt ! 1 12 00 1 1 12 1 1ot 1
IE' X iz‘ﬂEervux‘ﬂEx_v ux‘ﬂEx+‘ﬂEy'+v_‘ﬂEy'+vux‘ﬂEy'+
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v? EX  Uu'X JEX

v LU0 by TBZ By 1fEX
c® X c- It 1% 1z c° 1t
1 1 1 [ 2 I | ] [
‘HEX'+‘|1Ey'+‘HEZ 1_|_v'_2_|_vu2x _ K
> v 1 2 c e,
where the first blank is 8.5 and because of this equals to zero, the second blank is equal to
v (m)J' x') =vVmr'ux= M gotten from 8.26 and 8.45 resulting in
e,C
1 1 1 2 LI | ] 2 TR | TR | ] LI |
‘ﬂEx‘+‘ﬂEy'+‘ﬂEz 1+\/_Z_Fvuzx _1+\/_2+vu2x +_vuzx__vuzx
1x Y% 1z c c €, c c e, C e, C
from where we get TE" X + 1Ey + 1EZ = r— that is the Law of Gauss in the differential form to the O’

fix y 1z

D
o

observer.
Proceeding this way we can prove the invariance of form for all the other equations of Maxwell.
89 Explaining the Sagnac Effect with the Undulating Relativity

We must transform the straight movement of the two observers O and O’ used in the deduction of the
Undulating Relativity in a plain circular movement with a constant radius. Let's imagine that the observer O
sees the observer O’ turning around with a tangential speed v in a clockwise way (C) equals to the positive
course of the axis x of UR and that the observer O’ sees the observer O turning around with a tangecial
speed V' in a unclockwise way (U) equals to the negative course of the axis x of the UR.

In the moment t =t = zero, the observer O emits two rays of light from the common origin to both
observers, one in a unclockwise way of arc cty and another in a clockwise way of arc ctc, therefore cty = ctc
and ty = tc, because c is the speed of the constant light, and t, and tc the time.

In the moment t = t' = zero the observer O’ also emits two rays of light from the common origin to both
observers, one in a unclockwise way (useless) of arc ct’;, and another one in a clockwise way of arc ct’c, thus
ct'y = ct'c and t'y = t'c because c is the speed of the constant light, and t'y and t'c the time.

Rewriting the equations 1.15 and 1.20 of the Undulating Relativity (UR):

%:%: 1+C2 ZV;JX 1.15

I V2 o2vu'x
M—FZ 1+—2+ > . 1.20

Making ux = u

X' = c ( ray of light projected alongside the positive axis x ) and spliting the equations we have:

t=t1-Y 0.1 t=t 147 9.2
C C
\Y; \Y;
V= v 9.3 V——— 9.4
1- Y 1+
C C
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When the origin of the observer O’ detects the unclockwise ray of the observer O, will be at the distance
Vi, =V t', of the observer O and simultaneously will detect its clockwise ray of light at the same point of the
observer O, in a simetric position to the diameter that goes through the observer O because
ct, =ct. t, =t. and ct, =ct. ', =t'., following the four equations above we have:

2pR
ct, +vt. =2pR t.=—— 9.5
tU C p C C+vV
2pR
ct.+2vt',=2pR t.=—— 9.6
C U p C C+2\/

When the origin of the observer O’ detects the clockwise ray of the observer O, simultaneously will detect its
own clockwise ray and will be at the distance Vt, =V t'2U of the observer O, then following the equations
1,2,3 and 4 above we have:

_2pR

ct,. =2pR+wvt t 9.7
2C p 2C 2C C-V
2pR
Ct,.=2pR  t,.=2P0 0.8
C
The time difference to the observer O is:
2pR  2pR 4pRv
Dt:tzc-tcz P - P = P 9.9
C-V Cc+v c¢?-vV?
The time difference to the observer O’ is:
2pPR  2pR 4pRv
Dt':t'zc-t'C: P - PR _ P 9.10

c c+v (c+v)

Replacing the equations 5 to 10 in 1 to 4 we prove that they confirm the transformations of the Undulating
Relativity.

810 Explaining the experience of lves-Stilwell with the Undulating Relativity

We should rewrite the equations (2.21) to the wave lenght in the Undulating Relativity:

| |
['= and | = 2.21

2 2 v
1+v _2vux \/1+v'+2\/u><

c® c? c? c?
Making ux = u’x’ = ¢ ( Ray of light projected alongside the positive axis x ), we have the equations:

|I
and | =——, 10.1

1- Y 1+!
c Cc
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If the observer O, who sees the observer O’ going away with the velocity v in the positive way of the axis X,
emits waves, provenient of a resting source in its origin with velocity ¢ and wave lenght | ¢ inthe positive
way of the axis X, then according to the equation 10.1 the observer O’ will measure the waves with velocity ¢
and the wave length | ', according to the formulas:

I 1
and | . =—LB—, 10.2

1- Vv 1+
c c

If the observer O’, who sees the obsesrver O going away with velocity v’ in the negative way of the axis X,
emits waves, provenient of a resting source in its origin with velocity ¢ and the wave length | 't in the
positive way of the axis x, then according to the equation 10.1 the observer O will measure waves with
velocity ¢ and wave lenght | A according to the formulas:

I I
|'-=—2— and | ,=—F—, 10.3
1- Vv 1+V
C C
The resting sources in the origin of the observers O and O’ are identical thus | - =1";.

We calculate the average wave length | of the measured waves (I Al 'D) using the equations 10.2 and
10.3, the left side in each equation:

|__ID+IA_1 | ¢ + 1-V |=ID A— | ¢ 1+ 1-V
2 2 4.V C 2 21.V C
Cc Cc

We calculate the diffrence between the average wave leght | and the emited wave lenght by the sources
DI =1 -1:

_ | 2

Dl =l -, =—F 1+ 1- ¥ | _
21-V ¢
C
o 2 21-Y
DI =——F — 1+ 1- ¥ - ¢
21-V ¢ 21-V
C C
| — IF V2 \
DI = 1+ 1-¥ -21-V¥
21-VY ¢ ¢
C
D=1+ 1+1-2¥+V—z-2+2¥
21_y cC C C
C
— 2
Dlzllv %% 10.4
c
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810 Ives-Stilwell (continuation)

The Doppler’s effect transversal to the Undulating Relativity was obtained in the 82 as follows:

If the observer O’, that sees the observer O, moves with the speed —V’ in a negative way to the axis x’, emits
waves with the frequency Y and the speed c then the observer O according to 2.22 and U X =-V will
measure waves of frequency Y and speed c in a perpendicular plane to the movement of O’ given by

2
y=y [1- ‘é—z 2.25

2 2
For U'X =-V we will have UXx=zero and ,/1- Vl—z,/l+v—2 =1 with this we can write the relation between
C C

the transversal frequency Y=Y, and the source frequency Y’ =Y like this
- Y
Yo ==
1+
C
with c=Yy,| , =Y 1" we have the relation between the length of the transversal wave | , and the length of

10.5

the source wave | "¢

2
| =1 1+ 10.6
c

The variation of the length of the transversal wave in the relation to the length of the source wave is:

2 2 2 | 2
DIt=It-IF=IF/1+\é—2-IF=IF /1+§-1@F1+;’—Cz-1 @7F§ 10.7

that is the same value gotten in the Theory of Special Relativity.

Applying 10.7 in 10.4 we have

— Dl
DI = ! 10.8
1- Vv
Cc
With the equations 10.2 and 10.3 we can get the relations 10.9, 10.10, and 10.11 described as follows
2
|, =1, 1-Y 10.9
A D c
I
And from this we have the formula of speed V-i- I'_A 10.10
c D
| o=l =10, 10.11

Applying 10.10 and 10.11 in 10.6 we have

2
| =4I AI'D\/1+ 1- /:—A 10.12
D

From 10.8 and 10.12 we conclude that | ,£1 . £1 £l £1',. 10.13

So that we the values of | , and |', obtained from the Ives-Stiwell experience we can evaluate | ,, | -,

Y and conclude whether there is or not the space deformation predicted in the Theory of Special Relativity.

C
Reference:

http://www.wbabin.net/physics/faraj7.htm
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811 Transformation of the power of a luminous ray b etween two referencials in the Special Theory of

Relativity

The relationship within the power developed by the forces between two referencials is written in the Special
Theory of the Relativity in the following way:

. ,_ Fu-vFx

Fu=— 111

VUX
1-

CZ

The definition of the component of the force along the axis x is:

dpx _ d{mu dm dux
Fx:—p:u:—ux+m— 11.2

dt dt dt dt

For a luminous ray, the principle of light speed constancy guarantees that the component ux of the light
speed is also constant along its axis, thus

X _dx . _ dux dm
— = — = UX = constant, demonstrating that in twvo —— = zeroand FX=—ux 11.3
t dt dt dt
. > dm_ 1 dE
The formula of energy is E =mc” from where we have — = — 114
dt c° dt
- dE o ux
From the definition of energy we have E = Fu that applying in 4 and 3 we have Fx=Fu—; 11.5
Cc

Applying 5 in 1 we heve:
VUuXx
Fu- (F u)—z
Fu= £
VUuXx
1-
c2

dE _ dE

= 11.6
dt dt

From where we find that F'u'= FuU or

A result equal to 5.3 of the Undulating Relativity that can be experimentally proven, considering the ‘Sun’ as
the source.
812 Linearity

The Theory of Undulating Relativity has as its fundamental axiom the necessity that inertial referentials be
named exclusively as those ones in which a ray of light emitted in any direction from its origin spreads in a
straight line, what is mathematically described by the formulae (1.13, 1.18, 8.6 e 8.7) of the Undulating
Relativity:

Z2=""= =2 =-uyy—=—=uz 1.13
t dt X,t t yt dt

i:d_xzu')(,l:d—y u'y',E d—z_ ' 7 1.18
t dt t dt t dt
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Woldemar Voigt wrote in 1.887 the linear transformation between the referentials os the observers O e O’ in
the following way:

X = AX+Bt 12.1

t = EX+Ft 12.2

With the respective inverted equations:

F -B
X = X+ t
AF - BE AF - BE

12.3

. -E A
t'= X+ t
AF- BE AF- BE

12.4
Where A, B, E and F are constants and because of the symmetry we don’t consider the terms with y, z and
y', Z\.

We know that x and x’ are projections of the two rays of lights ct and ct’ that spread with Constant speed ¢
(due to the constancy principle of the Ray of light), emited in any direction from the origin of the respective
inertials referential at the moment in which the origins are coincident and at the moment where:

t=t"=zero 12.5

because of this in the equation 12.2 at the moment where t' = zero we must have E = zero so that we also
have t = zero, we can’'t assume that when t' = zero, x’ also be equal to zero, because if the spreading
happens in the plane y'z’ we will have x’ = zero plus t'* zero.

We should rewrite the corrected equations (E = zero):

X = AX+Bt 12.6
t=Ft 12.7

With the respective corrected inverted equations:

x Bt
=—-— 12.8

A AF
t

t'=— 12.9
F

If the spreading happens in the plane y’ 2’ we have x’ = zero and dividing 12.6 by 12.7 we have:

X_B

—=—==V 12.10

t F

where v is the module of the speed in which the observer O sees the referential of the observer O’ moving
alongside the x axis in the positive way because the sign of the equation is positive.

If the spreading happens in the plane y z we have x = zero and dividing 12.8 by 12.9 we have:

£=-E=-V' orE=V' 12.11
t' A A

where V' is the module of the speed in which the observer O’ sees the referential of the observer O moving
alongside the x’ axis in the negative way because the signal of the equation is negative.
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The equation 1.6 describes the constancy principle of the speed of light that must be assumed by the
equations 12.6 to 12.9:

x> - c*t? =x*-cit'? 1.6
Applying 12.6 and 12.7 in 1.6 we have:
(AX+Bt )’ - c?F2'2=x2-c'?

From where we have:

B> 2ABx
(Azx.z)_ 22 Fz__z_ . =222
c ct
_ 5 _ _ , B? 2ABX _ _
where making A” = 1 in the brackets in arc and F~° - — - 2 =1 in the straight brackets we have
Cc Cc

the equality between both sides of the equal signal of the equation.

B> 2ABX B> 2BX
AppllyingA=1in F?- — =1 we have F? =1l+—+—— 12.12
c ct ¢ ct
. _ B _B
Appllying A =1in 12.11 we have A = 1 =B=Vv 12.11

That applied in 12.12 suplies:

/ Vi o 2UX
F=./1+—+ = F(X ’t' 12.12
c® ct ( )

as F(x, t) is equal to the function F depending of the variables x’ and t'.

Applying 12.8 and 12.9 in 1.6 we have:

2 2

X% - ¢cit? = 1-& - ZLZ

A AF F
From where we have:

2 2

X 1 B 2Bx
Xz'Cztzz_z'Cztz_z' 2 2p2 T po2

A F A°C°F A°c Ft

1 B? . 2BXx
F2 A’C’F® A*C’Ft
have the equality between both sides of the equal signal of the equation.

=1 in the straight bracket we

where making A” = 1 in the bracket in arc and

Applying A =1 and 12.10 in i- B® + 2Bx =1 we have;
PPYINg ' F? ACPE’ ARt '
F=— 1 - F(x.t) 12.13
Va.Y)%
1+ -
c® ci

as F(x, t) is equal to the function F depending on the variables x and t.
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We must make the following naming according to 2.5 and 2.6:

c2 ¢k
2

K:1+V—2-¥( F:i
c? ¢’ JK

As the equation to F(x’, t") from 12.12 and F(x, t) from 12.13 must be equal, we have:

2
N T
c ct v: X
J1+r -
c® ct

Thus:

2 2
\/1+V—2-@( 1+ X g o VKWK =1
C ct C ct

Exactly equal to 1.10.

Rewriting the equations 12.6, 12.7, 12.8 and 12.9 according to the function of v, v’ and F we have:
X=X+/T1
t=Ft

With the respective inverted corrected equations:

X =X- vt
r=_
F

We have the equations 12.6, 12.7, 12.8 and 12.9 finals replacing F by the corresponding formulae:

X=X+t

With the respective inverted final equations:

X =X- vt

2

\Y VX
t=t,|1+—- ==

c® ci

That are exactly the equations of the table |

B v
As V= E and V = B then the relations between v and v’ are V= E or V=VF
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We will transform F (12.12) function of the elements v', x’, and t’ for F (12.13) function of the elements v, x
and t, replacing in 12.12 the equations 12.8, 12.9 and 12.18:

2
E - /1+ﬁ+ X _ 1+(vF) . 2VF(x - vt)
¢ c? o2

22 2 22 2 22
F_\/1+VF L XF PF :\/1+2vxF V’F

|~

- c? ct c? ct c?
2uxF?  V2F? V2 E?  2uxF? 1
FP=1+" -1 PP+ Z0T =1 F=— -
ct c C ct 1+V2 ] /X
c® ci

That is exactly the equation 12.13.

We will transform F (12.13) function of the elements v, x, and t for F (12.12) function of the elements v, X’
and t’, replacing in 12.13 the equations 12.6, 12.7 and 12.18:

F= 1 _ 1 _ 1
2 2 , 2 2
N A Y 20 N TR

¢ ct ¢’ F c’FFt c’F? c*'F? C°F

F= L Fra VL AX g gl gV 2IX
\/1_ vi X c’F2 c*' F? 2
CZFIZ C2t|F|2

That is exactly the equation 12.12.

We have to calculate the total diferential of F(x’, t') (12.12):

dF = I g+ TE g
% i
as:
T _1v JF__1VvX 1219
®% JK it W JK it '
we have:
1 v 1 v X

dF = dx- —dt
JKoet T JKett
where applying 1.18 we find:

1 v 1 Vv dx
dF = dx- —dt = 12.20
JK' ¢t JK' ¢t dt

From where we conclude that F function of x’ and t’ is a constant.
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We have to calculate the total differential of F(x, t) (12.13):

F :de+£dt
Ix qt

d

as:

fIF_ 1 v qIF 1 v X
T T3 . and — =- —3—2? 12.21
X K2 ct qit K2 ct
we have:
dF=t Vogx LV Xy 12.22
KE ct KE ctt
where applying 1.13 we find:
1 v 1 v dx
dF :_S_de- —3—2—dt:0
Zctt 2 ctdt
K? K?2

From where we conclude that F function of x and t is a constant.

The equations 1.13 and 1.18 represent to the observers O and O’ the principle of constancy of the light
speed valid from infinitely small to the infinitely big and mean that in the Undulating Relativity the space and
time are measure simultaneously. They shouldn’t be interpreted with a dependency between space and
time.

The time has its own interpretation that can be understood if we analyze to a determined observer the
emission of two rays of light from the instant t=zero. If we add the times we get, for each ray of light, we will
get a result without any use for the physics.

If in the instant t = t' = zero, the observer O’ emits two rays of light, one alongside the axis x and the other
alongside the axis y, after the interval of time t', the rays hit for the observer O’, simultaneously, the points A,
and A, to the distance ct’ from the origin, although for the observer O, the points won't be hit simultaneously.
For both rays of lights be simultaneous to both observers, they must hit the points that have the same radius
in relation to the axis x and that provide the same time for both observers (t; = t, and t'; = t';), which means
that only one ray of light is necessary to check the time between the referentials.

According to § 1, both referentials of the observers O and O’ are inertial, thus the light spreads in a straight
line according to what is demanded by the fundamental axiom of the Undulating Relativity § 12, because of
this, the difference in velocities v and Vv’ is due to only a difference in time between the referentials.

V:M 1.2 \2 :ﬂ 1.4

t t
We can also relate an inertial referential for which the light spread in a straight line according to what is
demanded by the fundamental axiom of the Undulating Relativity, with an accelerated moving referential for
which the light spread in a curve line, considering that in this case the difference v and v’ isn’t due to only the
difference of time between the referentials.

According to 8 1, if the observer O at the instant t = t' = zero, emits a ray of light from the origin of its
referential, after an interval of time t;, the ray of light hits the point A; with coordinates (xy, y1, z1, t;) to the
distance ct; of the origin of the observer O, then we have:

¢zt [14V2 . A%
171 2 2
c° cty
After hitting the point A; the ray of light still spread in the same direction and in the same way, after an
interval of time t,, the ray of light hits the point A, with coordinates (X; + X, Y1 + Y2, 21 + 25, t; + 1) to the
distance ct, to the point A;, then we have:

X, X 2 N 2 N 2
l:%:ux _1:_2:ux 1+V_2_2_X1: 1+V_2_2_X2: 1+V_2_2V_;'IX
t dt t, ot c” cty c° ct, C C
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and with this we get:
,=t, / \a 2‘/ / 2vux
v+, =t 1+__ /1+ 2vux (t,+t,) /1+ 2vux (t, +t,) 1+__ 2\2(X1+X2)
(t, +t,)

The geometry of space and time in the Undulating Relativity is summarized in the figure below that can be
expanded to A, points and several observers.

-

0, 0, 0=0 0,
t
t=t = zEroO
In the figure the angles have a relation y =f'-f and are equal to the following segments:
O,to O° O isequalto O° O to0; (O, « O,=vt, =Vt,)
O, to Oy is equal to 0", to 0, (O, « O, =V(t, +t,)=V (t',+',)® vt,=vt',=0,« O,+0,« O,)
And are parallel to the following segments:

O, to A, is parallel to O; to A;
O’, to A, is parallel to O’; to A;

X X" is parallel to X, ° X",

The cosine of the angles of inclination f and f' to the rays for the observers O and O’ according to 2.3 and
2.4 are:

Ux_v
\ - ' . cod - v/c
UX = u>2< v ux _ c2 c cod' = =
1+ - ZVEX ¢ 1+ - ZVEX \/1+V2- N oo
C C C C C C
,_cod -v/c
cod :T 12.23
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And with this we have: serf'=—— 12.24
JK
ux v
' cod'+vV/c
ux= uzx HV — X €t cod= =
\/1+V|2+2V'l;)< ¢ \/1+\/'2+2\/ng \/1+V|2+2V|cosf'
Cc Cc Cc Cc Cc Cc
'+
cod _cod'+v/c _WC 12.25
KI
And with this we have serf =&i 12.26
Kl
The cosine of the angle Y with intersection of rays equal to:
1- VWX VUX 4 Veod 1+ Y cos!
— c _ C — C — C
cogy = = = = 12.27
VK JK' VK JK
serf serf’
And with this we have: sery =Y > =V 12.28

cJK c¢JK

The invariance of the COSy shows the harmony of all adopted hypotheses for space and time in the
Undulating Relativity.

The COSy is equal to the Jacobians of the transformations for the space and time of the picture I, where the

2 2
radicals v K = ,}1+V—2 - %( and vK' = 1+V'—2 + 2\/2't).(' are considered variables and are derived.
C C C C

1 00 -V
| y 1. VX 7. VUX
cosy =g =Tx! _T(xy zt) 8 E)L?L 8 - ct_ ¢
gy =J= o= = = 8.8
™ 9(xyzt) |- vie? 001 14V2_ wx VK VK
| VK JK 7 c? ¢t
1 00 vV .
VX VU X
K .”( x,y,z,t) B 0 10 0 _1+C2t' _1+ o
cosy =J'=12_= = 0 01 0 = = 8.8
' A(xyZr) |vicd 5o 1 q.vi,vx | YKVK

813 Richard C. Tolman

The 84 Transformations of the Momenta of Undulating Relativity was developed based on the experience
conducted by Lewis and Tolman, according to the reference [3]. Where the collision of two spheres
preserving the principle of conservation of energy and the principle of conservation of momenta, shows that
the mass is a function of the velocity according to:

where M, is the mass of the sphere when in resting position and U = |u| =+/UU the module of its speed.

Analyzing the collision between two identical spheres when in relative resting position, that for the observer
O’ are named S’; and S’, are moving along the axis x’ in the contrary way with the following velocities before
the collision:
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Table 1

Esphere S, Esphere S’,

ux,=v ux,' =-v

uy,=zero | Uy,=zero

uz,=zero | uZzZ,=zero

For the observer O the same spheres are named S; and S, and have the
(uxl, ux, ,uy; =uz = zero) before the collision calculated according to the table 2 as follows:

The velocity UX,; of the sphere S, is equals to:

wm Y vy
! 2 2’

\/1+\’2+2"“><1 \/1+"2+ AV 14

c? c? c c c
The transformation from v’ to v according to 1.20 from Table 2 is:
V= vV — \% — vV

2 1 2 2

\/1+\/+2\/'UX'1 \/:|_+V|2+2v'2\/I 1+ 3\/2
c? c? c c c

That applied in UX; supplies:

ux, =2 —Y =2y
3vl 2
1+==
C
The velocity UX, of the sphere S; is equal to:
u'x,+v -
ux, = 5 22\, ™ = 2\/2’\/( v):zero
\/1+v2+u2 2 \/1+v2+-2
C Cc c C
Table 2
Sphere S; Sphere S,
ux, :A: 2V 3
1+ ux, =zero
2
C
uy, =zero uy, =zero
uz, =zero uz, =zero

velocities

For the observers O and O’ the two spheres have the same mass when in relative resting position. And for
the observer O’ the two spheres collide with velocities of equal module and opposite direction because of

this the momenta (p',=p',) null themselves during the collision, forming for a brief time (Dt') only one

body of mass m, =m, +mn,.

According to the principle of conservation of momenta for the observer O we will have to impose that the

momenta before the collision are equal to the momenta after the collision, thus:

myuX, +myux, =(m, +m,)w

Where for the observer O, w is the arbitrary velocity that supposedly for a brief time (Dt) will also see the

masses united (m:ml+mz) moving. As the masses M have different velocities and the masses vary
according to their own velocities, this equation cannot be simplified algebraically, having this variation of

masses:
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To the left side of the equal sign in the equation we have:

U=ux, =2v
me—T - M . m _ m
(u)* (ux,)* (2v)° \/1-4\/2
1- o2 1- o2 1- & c2
U=ux, =zero
M m m, —
m, = = = =
LW [ [ e
e e e
To the right side of the equal sign in the equation we have:
u=w
_ m _ m _ m
m, (u)z (W)Z \/1_ W2
o c? s c?
m _ m _ M

TR

Applying in the equation of conservation of momenta we have:

MyuX, +m,ux, =(m, +m, )w=m,w+m,w

LZ\/+mO_O: m w+ My W
1. 4 W W
c? c? c?
From where we have:
2myv . 2myw vV _ W
4 w2 4v? s
\/1'cz Jl'cz \/1'& \/1'cz
w=—VY__
3\/2
1- o2

As W1V for the observer O the masses united (m:ml +mz) wouldn’t move momentarily alongside to the

observer O’ which is conceivable if we consider that the instants Dt1 DX' are different where supposedly the
masses would be in a resting position from the point of view of each observer and that the mass acting with
velocity 2v is bigger than the mass in resting position.

If we operate with these variables in line we would have:

myux, +m,ux, =(m, +m, Jw=mw+m,w

m, Y o= gy T, 2Mw
2 2 2
B R
- c c c
2
Y
C2
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2myV _ 2myw
¥ . 1 4/ \/1\2,22
= 1-
c ct v
c
2my  _ 2myw
vV 4v? w
\/l+ ¢ c? \/1_ c?
2myv _ 2myw
V2 w
1- o2 1- o2

From where we conclude that
v

3\/2

C2
A relation between v and V' that is obtained from Table 2 when ux =2v that corresponds for the observer O
to the velocity acting over the sphere in resting position.

w=V which must be equal to the previous value of w, that is:

w=V =

1-

§14 Velocities composition
Reference — Millennium Relativity

URL: http://www.mrelativity.net/MBriefs/VComp Sci_Estab Way.htm

Let's write the transformations of Hendrik A. Lorentz for space and time in the Special Theory of Relativity:

= X- vt = X +vt
V2 14.1a v | 14.3a

1= 1=

C Cc
y=y 14.1b y=y 14.3b
=2 14.1c =7 14.3c

t- X g+¥X

. c __c?
t=—"== 142 | B 14.4

v v

c? c?

From them we obtain the equations of velocity transformation:

ux- v ux+v
uxs= ux=
1. VUX 14.5a 14 VU X 14.6a
2 2
(o (o
2 2
uy. 1—V—2 uy 1—\(;—2
'V = 14.5b = 14.6b
uy 1 VUX uy 1+vu‘x
T2 2
C C
2 2
uz|1- ¥, uz, - ¥
uz= c 14.5¢ | uz= ¢ 14.6¢
1 VUX 1+vu‘x
T2 2
C C

Let's consider that in relation to the observer O’ an object moves with velocity:

u'X =15.10°km/s(=050c) .

And that the velocity of the observer O’ in relation to the observer O is:

v=15.10°km/s(=050c).
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The velocity UX of the object in relation to the observer O must be calculated by the formula 14.6a:

UX+v _ 1510°+1510°
LVUX 1510°15.10°
¢’ (Bo.1c?f

ux= =24.10°km/s(=080c).

Where we use ¢=30.10°km/s(=100c).

Considering that the object has moved during one second in relation to the observer O (t= 1OOS) we can
then with 14.2 calculate the time passed to the observer O

VX M( 1901_%
t'T tl‘ > ( 5)2
e e 3010°) 060 ._gcon
e 2 sF  Jois
V V y
\/1_02 \/CZ L 51 @2
(30.10°)

To the observer O the observer O’ is away the distance d given by the formula:
d=vt=15.10°.1,00=15.10km.
To the observer O’ the observer O is away the distance d’ given by the formula:

060 _

V0,75

To the distance of the object (do , d'o) in relation to the observers O and O’ is given by the formulae:

d'=vt =15.10> 1,0392310°km.

d, =uxt=24.10°.100=24.10°km.

(ux+v) _[1510°+1510°) 060

do, =uxt= =2,40.10°km
\/1' v | ksagf VOTS
2 i
¢ (3010
d'y=uxt=1510°-299 =10392310°km.
Jo7s
_ _ 5
==X Vi _(2410°-1510 )l'0°=1,03923105km
1Y \/1- v
c? c?

To the observer O the distance between the object and the observer O’ is given by the formula:
Dd=d,- d=24.10°-15.10°=090.10°km.
To the observer O the velocity of the object in relation to the observer O’ is given by:

Dd _090.10°km

— 5 _
: 100s ~09010°km/s (=030x).
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2
Relating the times t and t' using the formula t'=t1I1-V—2 is only possible and exclusively when UX=V and
c

U' X =zero what isn’t the case above, to make it possible to understand this we write the equations 14.2 and
14.4 in the formula below:

t 1- Yoo t 1+Ycos
. c _ c
U=——— | 142 | =—F—— | 144
1- v 1- v
c? c?
Where cosf =2 and cosf'zi.
ct ct

The equations above can be written as:
t=f(tf) and t=f'(t' ) 14.7

In each referential of the observers O and O’ the light propagation creates a sphere with radius Ct and ct
that intercept each other forming a circumference that propagates with velocity c. The radius Ct and Ct' and
the positive way of the axis X and X form the angles f and f' constant between the referentials. If for the
same pair of referentials te angles were variable the time would be alleatory and would become useless for
the Physics. In the equation t'= f(t,f) we have t' identical function of tand f , if we have in it f constant and
t' varies according to t we get the common relation between the times t and t' between two referentials,
however if we have t constant and t' varies according to f we will have for each value of f one value of t’
and t between two different referentials, and this analysis is also valid for t=f" (t' ,f') .

Dividing 14.5a by ¢ we have:

U'x v cosf- ¥
=2=L_C cogr= c. 14.8

¢ 1 VUZX 1- Yeosr

c c
Where cosf===Y% angd cog":ilzﬁ
ct c ct ¢

Isolating the velocity we have:
v_ (cosf- cost') _ux-ux
¢ (- cosfcos?) V_l_ uxux 14.9

C2

From where we conclude that we must have angles f and f' constant so that we have the same velocity
between the referentials.

This demand of constant angles between the referentials must solve the controversies of Herbert Dingle.
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§15 Invariance

The transformations to the space and time of table I, group 1.2 plus 1.7, in the matrix form is written like this:

y _0100 vy
=001 0 . 15.1

X 100-v x
7
t  000VK t

That written in the form below represents the same coordinate transformations:

X 100-v/c x
y _010 0 vy
z 001 O ya 15.2
ct 000K ct
We call as:
X X! 100-vic x X
i _ X? _. _010 0O i G
XI—XI'— ¥ - )(3 ,a—aij—ooj_ 0 ,X—XJ— z - X3 153
et ox? 000 VK et ox
That are the functions X" =x" (x1)=x" (x,x2,x2,cx)=x" (x, y,z,ct) 15.4
That in the symbolic form is written:
X'=a.X orintheindexed form X'= a;x’ XxX'=a;x’ 15.5
j=1
Where we use Einstein’s sum convention.
The transformations to the space and time of table I, group 1.4 plus 1.8, in the matrix form is written:
x 100 v X
y _010 0 vy
t 000JK' t
That written in the form below represents the same coordinate transformations:
x 100v/c X
y _010 0 vy
ct 000JK' ct
That we call as:
x X 100v/c X X!
_k_y_XZ I_I_Oloo _|_y_x2
x=x‘= 2 = 's ,&=a4= 001 0 ,X—X—z = s 15.8
et oxt 000vK" et cx?
That are the functions XX =xX (X" ): xK (X'l,X'2 X3 ,CX"‘)I X (X', y',Z',Ct') 15.9
That in the symbolic form is written:
4
x=a'.x' orinthe indexed form x*=a',x' x“=a', x' 15.10
I=1
2 2 1
Being VK =1+ - 2% (17) JK'= 1+"—2+% (1.8) and VK VK’ =1 (1.10).
c® c°X c° c
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The transformation matrices & = &;; and &'=a’", have the properties:

100-v/c 100v/c 1000

4
o ., _ 010 0O 010 O _ Q100 _,_
a.a—aijakl—__laijaj,— 001 0 001 0 = 0010 == 15.11
2 000 VK 0004K' 0001
. 1 000 1000 1000
M ,_ 0100 0100 _ 0100 _
atat—ajiam—i_lajiaik— 0010 0010 =0010°" =g 15.12
} ~v/ic00JK V/c00+4K 0001

Wherea' = aj is the transposed matrix of & = a&; and a'= a', is the transpose matrix of a'=a"y, and

d is the Kronecker’s delta.

100v/c 100-v/c 1000
4 010 0O 010 O _o0100 _, _

a'.a=a'k|aij Ilak|a“ 001 O 001 O = 0010 —I—djk 1513
i 000VK' 000+K 0001
. 1000 1 000 1000
U 0100 0 100 _ 0100 _, _
a'a'=a\ a;= a.a,= ( o1 0 01 0 = o010 ='=d 15.14
K=:
' \//coo\/E -v/ic00JK 0001

Where a" =a', is the transposed matrix of @'=a',, and @' = a; is the transposed matrix of & = &,

and d is the Kronecker’s delta.

Observation: the matrices a; and a', are inverse of one another but, are not orthogonal, thatis: a; * a'y

and a; * a'y.

The partial derivatives M of the total differential dX' =dej of the coordinate components that
fix! %’

correlate according to X' =X" (Xi), where in the transformation matrix & =a&; the radical \/Eis

considered constant and equal to:

Table 10, partial derivatives of the coordinate components:

MZ Xl.l: M:l M:O M:O J]X—Il:-y
% qx ! X2 e Ix* c

A G "SR 'GP "SI G
™% % | %2 7w =01 g

X' _ X3 X 3 X 3 X 3 X3
?ij =‘l‘ITTXj ) 1‘|11x1 =0 1‘|]1x2 =0 “||11x3 =1 11117=0

M:M— Xl4:0 ﬂX'4:O ﬂx4 =0 M:\/E
> x x> %3 X

The total differential of the coordinates in the matrix form is equal to:

dx*  100-vic dx
dx? _ 010 0 dx
e S001 0 go 15.15

cdx* 000 VK cd¥
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That we call as:

dx* - 100-v/c dx
_yis dX2 ,_ X' _ 010 0 _ i dX
IX=dX'= Lo ASASTE 001 o - BEdK S 15.16
cdx* 000 VK cdx’
A . TR
Thenwe have dX=Adx dxi=  Ajdx d%':%i—jdxl 15.17

=1

k k

The partial derivatives J]X—I of the total differential dx* =J]X—,|dx'I of the coordinate components that
i X

correlate according to Xk=Xk(X"), where in the transformation matrix a@'=a‘, the radical vK'is

considered constant and equal to:

Table 11 partial derivatives of the coordinate components:

WXy (KX IV
™| xt w2 gk [ oc
ﬂXk _ ﬂXZ _ ﬂXZ _O ﬂXZ _1 ﬂXZ _ ﬂ_XZ_O
™o Xt T wE )t
I3 12¢ o 3¢ 0| 3¢ |26
ﬂ_xk: ™ _ J]ﬁzo x* =0 x* _ M:\/ﬁ

® x| w®2 x|

The total differential of the coordinates in the matrix form is equal to:

dd 100v/c dxt

dx¥* _ 010 O dx 2

¢ S 001 0 ggd 15.18
cd¥ 000+K' cdx*

That we call as:

dxt ’ 100Vv/c dx?
ok dx? _ak_IX_ 010 O _ ol dx?
dx=dx" = e A=A, _W_ 001 0 dxX=dx'= e 15.19
cdx’ 000VK" cdx?
4 k
Thenwe have: dx=AdX dxk= Akdx' dx* :%(‘—,Idx' 15.20
1=1

The Jacobians of the transformations 15.15 and 15.18 are:

L || N %)(1)8_\6/
_ﬂX'_( X2 X3, )_ _
‘]_@_ 1l 2 @ X -l001 O _\/E 15.21
o 000 VK
100v/c

X T3 x?) _j010 0 |_
J_W_ﬂ(xlxzﬁwj"om 0 |=VK' 15.22
B 000VK'|

2 2 1 a1
Where VK = 1+§- 2‘;‘3* 2.5), VK' = +‘(’:—2+2"(‘:‘2>‘ 2.6) and VKK =1 (1.23).
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The matrices of the transformation A and A' also have the properties 15.11, 15.12, 15.13 and 15.14 of the
matrices & and &a'.

From the function f:f(x"):f':f'[xk (X" )] where the coordinates correlate in the form xk =xk (X") we

have ﬂ——ﬂ— described as:

X' X< ax!
T _9F gx< _ 97 o, 97 qx2 97 qxe , 17 qxe
X ik xt o fxt IxT o qx2 Ix o fxe xt x4 X
7 _ 9 qxx _ 97 qx N 17 qxe N 17 qx3 N 7 qxs
X2 fixk Xz xt x2 o qx2 x2 - xs X2 x4 x2
17 — 14 Ixk — 17 Ixt + 7 x> + \\Vd X3 + a7 x4
Ixe o Ixk X xtaxE e fx2 xs o xs IxE o x4 e
ﬂf — ﬂf ﬂxk - ﬂf ﬂxl + ﬂf ﬂxZ + ﬂf ﬂx3 +ﬂf' ﬂx4
Tt XA T X T e X T fixe

That in the matrix form and without presenting the function / becomes:

"y o I I,
'nxl 'nx2 'n><3 'nx“
‘ﬂx %2 =1 %> -0 x> -0
‘Hfz'n'n'nﬂz'nﬂ'n'n'nx; ﬂxzﬂx3ﬂ><4
' It pdel et Koy g K,
! ﬂx2 ﬂx3 x4

4 4 2 gl
fix v ‘I] -0 x* oI _ 1 4,V vux

Where replacing the items below:

™ _ 1 g, vE o vaxt it 1 vE ovux
w®4 JK T e c? ™ JK 2 c?

Observation: this last relation shows that the time varies in an equal form between the referentials.

We get:
SR T L
x t 'nxz 1]x'3 ﬂ><4 \/_
™oy WPy g™,
7 _ 9 9 9 9 _ 1 9 91 9 9wt ‘|T><2ﬂ><3ﬂ><
SRR ER NEXNERNERENRNCR R NCR NI 'SP NS IR Gl
1 2 3 4
X ‘HX' ﬂx' X
x4 _ v x* -0 x* Oﬂx4 1 1+_ vuxt

Wl 22 3 x4 JK 2

That is the group 8.1 plus 8.3 of the table 9, differential operators, in the matrix form.
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From the function f':f'(x'i )=f :f[X'i (Xi) where the coordinates correlate in the form X' =X" (Xi) we

have ﬂZEM described as:

X X

ﬂfl — ﬂfl ﬂx‘i - Tlfl ﬂx'l+ ﬂfl ﬂx‘Z + ﬂfl ﬂx'S + ﬂfl ﬂx‘4
Ixt X Oxt o xOxt Xz IxEoxE X x4kt
ﬂfl — ﬂfl ﬂx‘i - ﬂfl ﬂx'l + ﬂfl ﬂx‘Z + ﬂfl ﬂx‘3 + ﬂfl ﬂx‘4
Ixz I Ix2 Xt axe X2 Ix2 o qxs Ix2 x4 qx2
17 _ ﬂf Ixi _ ﬂ/f' Ixe ﬂlf' Ix2 ﬂlf' Ix= . ﬂlf' x4
B IxIxe X x2 Ix3 Ixs e x4 e
ﬂfl — ﬂfl ﬂx‘i - ﬂfl ﬂx'l + ﬂfl ﬂx‘Z + ﬂfl ﬂx‘3 + ﬂfl ﬂx‘4
x4 T Ix4 I axs X2 x4 Ixs Ixe x4 x4

That in the matrix form and without presenting the function / becomes:

Ml: 1-IXI:L:OﬂXIl:Oﬂxl]-:-v
‘I]xlz ‘I]x22 ‘I]x32 ‘ﬂx"’2
™ W WX
7_ 71 9979 _ 7 7 1 1 I SEE PO
oo Rt wimlwewt Wy g WP,
ﬂxl ﬂxz ﬂx3 ‘|]x4

®_ v WAoo gmwto1 v ovud
™t cAVK 2 e VK 2 P

Where replacing the items below:

2 4 2 Uiyl
viovud Xt 1 4,V v

wVK 2 2 VK o

Observation: this last relation shows that the time varies in an equal form between the referentials.

We get:
ooy WX, ™o v
ﬂxz_ ‘szz_ ﬂxz_ ﬂx4_2 \/K_
T[X' =0 T[X' :]_T[X' =0 m:o
o1 9 99 - 1 91 1 ¢ ‘ITx13 ﬂxzﬂx?; ‘ITx43
BRI et X Ko K 2
I T i X

W_-v XY g 1 v? vux!?
wt c? 1x? %3 x* JK T2 P

That is the group 8.2 plus 8.4 from the table 9, differential operators in the matrix form.
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Applying 8.5 in 8.3 and in 8.4 we simplify these equations in the following way:

Table 9B, differential operators with the equations 8.3 and 8.4 simplified:

S [V | -1 v 1

x't qxt c2qx+ |81 xt x't c2qx+ 8.2
11 i [ [

X2 9qx? 811 | fx2 X2 8.2.1
T -1 T-1T

s 9qx3 8.1.2 | x3 X3 8.2.2
1 - q 1 e 1

X 4 Rc‘ﬂx“ 8.3B | cfx* \/?cﬂx"l 8.4B
%(TNC);—I&?:ZHO 8.5 11)11'1 +U'C)§l &4 =zero |85

The table 9B, in the matrix form becomes:

1 00O
rvv9 -9 - 17979 -9 8%88 15.23
xll XIZ X|3 x4 1 2 3 4 :
X=X~ IX = cf ix™ 1x* ix” cix v/c00JK

1 000
19 9-9 _ 9199 -1 0100 15,24

ﬂXlﬂX2ﬂX3CﬂX4 - ﬂxllﬂXIZTIXI?»CﬂXI“v 0 01 0
V/c00VK'
The squared matrices of the transformations above are transposed of the matrices A and A'.

Invariance of the Total Differential

In the observer O referential the total differentia | of a function f(Xk) is equal to:

o
ﬂdx“- W 9fF 1F 9F  dx 15.25

f 7 7 1/

dr ()= axe = e e I e e 7 g4

(X) ﬂxk X ﬂxl ‘|]x2 X ﬂX3 X ﬂX4 ﬂxl ﬂX2 ﬂX3 cﬂx“ ddx;
C

Where the coordinates correlate with the ones from the observer O’ according to X* =x¥ (X" ) replacing the
transformations 15.24 and 15.18 and without presenting the function f we have:

1 00 0 100v/c dx!

¥ . 9 9 7 9 0O 10 0O 010 O dx?
——dx“ = 15.26

K L 2 €003 o 4 0 01 0 001 0O gx®

L Toc Ao = Al -V/c00+K' 000vK' cdx?

df =

The multiplication of the middle matrices supplies:

1 000 100v/c é (1’8 "éc
o 100 o100 _ O 19 90 15.27

0 01 0 001 0 ~

1
V/Ic00K 000VK  -Vv/c001+2YdX

cdx*
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Result that can be divided in two matrices:

1 00 V/c 0 00 Vl/c
0 10 0 8288 0 00 O
0 01 o =0190., 0 00 0 15.28
2vdx? 2\/d><
-V /c001+ 0001 -v/c00%

c’dx*

That applied to the total differential supplies:

0 00 v/c

1000 g go o=
aF =V ge= 1 1 1 1 0100, 5 gg o X 15.29
wE T WIKZS okt 0010 2vdxt X

0001 -Vv/c00=—/—=— 4
2dx” cdx

Executing the operations of the second term we have:

0 00 v/c

1
f 11 g 000 0 G g 1 e, VXt 1
1 > 3 2 0 00 0 3 = —2—4Xm+\/ —ldX4+—2—4—4dX 4
WEIXZ X2 oK ovdx! O 2 ¢ X c? dx” ¢

-V/c00=—=—- 4
N cdX

Where applying 8.5 we have:

VA IRV ) NP2 SR P

c2 fx 4 c2 dx4 fx 4 2 dx4 x4
Then we have:

0 00 v/c 1
g 1 g g 0000 &%
e ineianet O 00, 0 . gga =Zero 15.30
TR AT 00213 Si

With this result we have in 15.29 the invariance of the total differential:

or 1000 dx

_F k- 1 1 1 1 0100 dx? _9 ,i_ s

O T et 0010 ax? T 7Y 15.31
0001 cx

In the observer O’ referential the total differenti  al of a function f(X'i) is equal to:

dx*
- B VA ' 2
dr (¢ )=1" g = I i I gy 37 gy 17 gyes 2 A7 A7 A7 dx7 15.32
' 1S ' X X * X2 X 3 cfx dd>; ’
o]

Where the coordinates correlate with the ones from the observer O referential according to X" =X" (Xj )
replacing the transformations 15.23 and 15.15 and without presenting the function / we have:

1 000 100-v/ic dx

17 i 9911 0 10 0 010 0 dx?
A= X e 001 0 001 0 g¢ 15.33
v/c00VK 000 VK cdx

46/126



The multiplication of the middle matrices supplies:

1000 100-vic (1) (1)8 '\(/)/C
0100 010 0 _ 9359 o

0010 001 0 - 0
v/ic00J/K 000 VK v/cOOl—W

Result that can be divided in two matrices:

1 00 -v/c 0 00 -v/c
010 0 5(1’88 0 00 O
001 o =09190. 000 o
vic001- 29X 0001 vicoo- 24X
c-dx c dx

That applied to the total differential supplies:

1000 999 v ge

_9F i _ 1.9 9 1 0100 dx?

df == o dae o010t 000 0. 4a

L DDA 0001 wicoo- X s
cZdx*

Executing the operations of the second term we have:

0 00 -v/c dxd

0 00 O

T1 9 9 go0 o @ Vv T ga T gs 2vi< T

1 IE cx

Where applying 8.5 we have:

V 1 ( 1dx g
dxi-v c? dx4 x4

2vdxt 9 _
o2 T 4- dx4=zero

c? dx4 x4

Then we have:

0 00 -v/c i

0 00 O
lllzls_ﬂ4 000 O g;‘; =zero
Tl . 2vdX o

c?dx*

With this result we have in 15.36 the invariance of the total differential:

0 1000 dxi 0
1P i 19T 99 0100 dx° _ i _
dff =—dX'= ———— =——dx! =dr
i 1 qrv2 €3 4 0010 o i
© x™ Ix“ x° cfix 0001 gy X
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Invariance of the Wave Equation

The wave equation to the observer O is equal to:

NEPINE S LA A LA A N S I I |

N2f - o2 ﬂ(X4)2 - ﬂ(xl)z ﬂ(x2)2 ﬂ(X3)2 e 1]()(4)2 - o %2 0 o’

Where applying 15.24 and the transposed from 15.24 we have:

10

~ 1 ﬂfz _ 01
sz'cz (4)2_ ﬂl ﬂ2 ﬂs ﬂ4 00
] IRt v

The multiplication of the three middle matrices supplies:

1000 40990 100" c
010 0 c
0100 _ 010 0
001 0 010 0 =
) o010 9190 =001 o
"V 004K' 000-1 X
oooVK ¥ 00-1—2‘::‘2“‘

Result that can be divided in two matrices:

-V -V
Loo - 1000 9% &
010 0 - 0100 , 000 0
001 0 ) 0010 0 00 0 )
-Vop-122vux®  000-1 -V, 4-2vux®
c 2 c c?

That applied in the wave equation supplies:

-V
, 1000 °°%0 &
R L 97”9 1 9 9 0100, 000 O
2 [ 4)2 Wiaw2ae3cnes 0010 0 00 0
calef MRt J9L0 0 000 P
c c

Executing the operations of the second term we have:

20 0100 o0 §

JK' 000-1 000JK T

1'[1
o
1000 1
0100 2 _
0010 ﬂi =0
000-1 3
1
cx?
1
x*
1T
x?
1
x3
1
cx *
1
x*
1
x?
1
x?*
1
cx*

VT T v T vux! T

T

1

ooo ¥ M

C A
7. 9717 ¢ 888 8 ®2 _
XX % Ix % cIx ¢ , 1T
iOO-ZVUX'l 1'[)(3

c c? q

cx*
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2

15.39

15.40

15.41
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Executing the operations we have:

AV [ "4 S [
c2 IX19x4+4 c2 c2 ﬂ()(4)2

Where applying 8.5 we have:

_ﬁ(-”'xl 1)1 2vux: 1 =zero

c2 c2 ﬂ)("‘lﬂ)("‘ c2 c2 ﬂ()("")z

Then we have:

A

1

ooo ¥ W

C 0
1 1 1 1 000 0 g% _

W axT 000 0 'y =70

iOO-ZVU'X' 1'[)(3

c c? q

cTx*

With this result we have in 15.43 the invariance of the wave equation:

|
x*
, 1000 _f¥ .
Rzr. L 77 _ 1 9 T 91 0100 qx?2 -RNzp. L 17
2 2 1 2 3 4 0010 2 2
c ﬂ(x4) ™K 2 X 3 X 000.1 1171]3 c 'n(x“)
1
cx *

The wave equation to the observer O’ is equal to:

CT R A LA AN AN AN W AN N A A |

) C2 ﬂ(x' 4)2 ﬂ(X'l)Z I ﬂ(X' 2)2 ' 1-[()(.3,)2 ) CZ 1.[()<.4)2 - ﬂxl ﬂ)(z ﬂXIS Cﬂ)(4

Where applying 15.23 and the transposed from 15.23 we have:

R

©

i 1000 1000 1200 % 9

~ ' 2
-2 V= T I I 1 5010 9190 0100 M
o] RN v o ne ggo.y 001 0 L

c 000K ‘Hgﬂ<

cx*

The multiplication of the three middle matrices supplies:

Vv
V —
100 0 145090 100 ¥ 100 ¢
010 0 c
0100 010 0O
001 0 010 0 =
001 0 001 0
YooJK 000-1 9010 § vk
c 000K ¥00-1+2%
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1000
0100
0010
000-1

= = =]
w N -

cx

15.44

15.45

15.46

15.47

15.48



Result that can be divided in two matrices:

Vv Vv
100 c 1000 000 c
010 0 _0100 , 000 O
001 O ~0010 T000 O 15.49
Vog.1+2vux. 000-1 v g,2vux
C 2 c C2

That applied in the wave equation supplies:

R

A S

L9 _ 919 9 0100 2288 o

q2p ' 0100 x
N7 e e o 0010 T 000 0 T 15.50

000-1 v, 2vuX 3

Yoo X 1x

C c il

cTx*

Executing the operations of the second term we have:

T

1

000 \"é '".l’f
19 1 1 0000 g _v i T,vy 1, v §
o 0 I o’ 000 O 1T I ¢l el 1T()(4)2

VA~ 2vUXt 3

~00=—~ fKx

¢ ¢

Executing the operations we have:

v 1 ,2vuxt 72
c2 fxt fix# c2 c2 q(x4)?

Where applying 8.5 we have:

v[-ux 1)1 L2vuxt 12

=Zero
CZ\ C2 ﬂx4 /ﬂx4 CZ C2 ﬂ(x4)2
Then we have:
1
ooo ¥ W
c T
T 1T 9 ¢ 000 O X2 _
O Tope 000 0§ =T o
VoouX el
S &
x*

1
'S
NP U SR B I | 0200 11_12 —Rzp. L 077 15.52
e pencaen 9080 8N ey
X
T
cTx*
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Invariance of the equations 8.5 of linear propagati

Replacing 2.4, 8.2, 8.4B in 8.5 we have:

w1 v .1 (uxv) C
ﬂXl'"Cz x4 Xt Czﬂ)(4+c2 Nrd \/r‘ﬂ)(“ zero

Executing the operations we have:

Tyux 17T VvV T uxt €.,V 1 —2ero
Xt c2z x4 Xt czqx4 c2 X4 c2qx+4

That simplified supplies the invariance of the equation 8.5:

uxt 1 -  ,uxt q _
WETJ' cz It XL oz e 2ere

Replacing 2.3, 8.1, 8.3B in 8.5 we have :

T .uxt § _q.v ., 1ev) —q_
WL 2 X4 T c2TXd €2 JK K a=2ero

Executing the operations we have:

TouxXt € _T,v T ,uxt T _ v T _s60
™t c2 X4 qxt czqx* c2 x4 c2 x4

That simplified supplies the invariance of the equation 8.5:

Xt c2 X4 xt c2 x4

The table 4 in a matrix from becomes:

pX*  100-v/c PX
px? _ 010 O px?
ox? 001 0

E/c 000 \/E El/c

pxX°  100v/c PX'
px* _ 010 0 px?
pX3 - 001 0 NE
E/c 000VK' pyg

The table 6 in a matrix form becomes:

Jx! 100-vic Jx
Jx? _010 0 ¢
Jx® 7001 0 gy
cr' OOOx/E cr

3¢ 100vi/ic Jxt
3é _ 010 0 gx2
@ 001 0 gy3
cr OOOJF cr'
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Invariance of the Continuity Equation

The continuity equation to the observer O is equal to:

Ix

2
j);s =zero

T 10X 19 10 1
4

N 1
N.J+ LI | N | S | N |
™t o e e

0wt 2 03 cx?
cr

Where replacing 15.24 and 15.56 we have:

100v/c Jx!
0 10 0 010 0 Jy2
0 01 0 001 0 Jys3

-v/c00JK 000JK ¢r

1 000

3 1.1 1 1

™K 2 xS cx

N
x*

+ =Zzero

15.57

15.58

The product of the transformation matrices is given in 15.27 and 15.28 with this:

0 00 Vv/c

0 00 0

0 00 0
-V /c002VuX

C2

Jx?!

Jx?

Jx3
cr'

1000
0100 ,
0010

0001

1

NJ+——
x*

17 7 17 1
™2 % 2 cqx

Executing the operations of the second term we have:

0 00 Vv/c
0O 00 O

e 7 ¢ 1] 3239 9

15.59

v axe VX 2vuxs I

|-‘|1><111>C2‘H>(3c‘ﬂx4 c2 X 4

J'X1t
JxX2 _
J'x3 X1

_V/coo2vuxt
C2

Where replacing JX1=r'U'X1 and 8.5 we have:

wloe: 1),

Then we have:

ux?t 1
c2 x4

_vuxt 17
cz x4

L 2VUX ! 1

cz X4 =Zero

0 00 v/c
0 00 O
0 00 O

vl
- \//COOZV‘([:'IZXI cr'

Jxt
Jx?

3

T 79 79

=Zero
™ 2 %2 cx

With this result we have in 15.59 the invariance of the continuity equation:

1000
0100
0010
0001

RN

LI
™ XX 2 X3 X’ ¥

x*

Ix!

IX? _q

s =N.J
"

c

The continuity equation to the observer O’ is equal to:

Jx?
' 1yl 1y 12 113 ' '
Tt 1x? X 1 Ix?

R

N.J' + T

=Zzero
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Where replacing 15.23 and 15.55 we have:

1000 100-v/c J¢
. 1 99 97 1 010 0 010 0 ¥

N"]I+ﬂX'4: ﬂXlﬂxzﬂXSCﬂX4 0010 001 O JX3 =zero

vic00JK 000 VK ¢

The product of the transformation matrices is given in 15.34 and 15.35 then we have:

| o0 398°Y° x
N.J'+ﬂ I R | 1 0100+ 0 00 0 Jx

4 adnlad o 0010 h's
BB 0001 vicoo- UK
Cc

Executing the operations of the second term we have:

0 00 -v/c Il

000 O
I I 99 go0 o I VB M 2wl
x™ Ix“ Ix° cfix v/cOO-Z\Q;Xl o c” X" x c® x

Where replacing JXt=7ux! and 8.5 we have:

vuxt 97 v(— uxt q )r- 2vuxt N7

=zero
cz x4 c2 x4 cz x4
Then we have:
88y
T 1T 5 o000 0 I =zer0
ix" x* x° cx* 2vuxt IX

v/ic00-=—; cr
C

With this result we have in 15.64 the invariance of the continuity equation:

q 1000 Jx: T
S '_ T 7 97 1 0100 X3 _g
N.J + = =NJ+—
4 1 q1v2 qv3 4 0010 3¢ 4
X % Ix° Ix° cfix 0001 or X

Invariance of the line differential element:

That to the observer O is written this way:
1000
(a5 =(axf +{ax?f +({cxf - (ca = [axt e o cant] 9390
000-1

Where replacing 15.18 and the transposed from 15.18 we have:

100 0 149909 100 ¥ gyt

010 0 c 9%
(d9?=[dx*dx?dx*cax*] 001 0 2190 o010 0 KX

v ; ) ]
Coo\/? 000-1 ;oo ficr cd

The multiplication of the three central matrices supplies:
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100 0 159909 100 ¥ c
010 0 c

010 0 01
001 0 010 0 =

0010 001 O
v 001 0
00

. ) } 1
K 000-1 00 i %oo-lé‘;jf

Result that can be divided in two matrices:

vV vV
100 < 1000 000 <
010 0 _ 0100 + 000 0
001 0 ) ~ 0010 000 0 )
Voo 2Vdx'  000-1 Vg -2vdy
c cdx* c cldx*

That applied in the line differential element supplies:

v
1000 999 ¢ dxz
2 _[qu1 402403 4] 0100 000 0 dx
(ds)? =[ax*dx?axcars] 9190+ 9000 ol
000-1 V g,-2vdxX®  cdx*
c c?dx?

Executing the operations of the second term we have:

000

v
c dx! .
1 2 3 4] 000 0 dXz _V'XmCdX 4 ! 1_2\/Xm
deaaCed] g g gge =gt el Cax-ZLO

VooV dXt cdx?

Then we have:

v

000 o dx*
000 0 dx?
000 0 dx?
v -2V 'dXt cdx?

dx*dx2dx3cdx? =zero

With this result we have in 15.71 the invariance of the line differential element:

1000 dx!

(ds)? =[x ax2dxscdx?] 0200 dXT —(gyat o (ax 2+ (ax ) - (can* f =(as)?

0010 dyx3
000-1 cox?

To the observer O’ the line differential element is written this way:

1000  dx!
(a8 =t F+(ax? P (o - (oo = ax* ax? ax? eax?] 9399 9%,
000-1 cx

Where replacing 15.15 and the transposed from 15.15 we have:

1000 -V
010 0 1000 100 dx

2
(ds)? =|axdxedxcdx’] 0 01 0 9190 010 0 X
[ ] 0010 551 o d¢

-V _ A
CooJE 000-1 oo e cdx

The multiplication of the three central matrices supplies:
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-V
1000 100 0 100 Y 100 —

c
010 O c
oot o0 9399 010 0 = 010 0 15.76
-V
“YoovK 000-1 000K ~Y00- 1+2;/dx1
Result that can be divided in two matrices:
-V -V
100 < 1000 000 —
010 0 _ 0100 000 O
001 0 ~0010 7 000 O 15.77
_00 1+2;/dxl 000-1 -v ;/dxj1
c?dx? c cdx
That applied in the line differential element supplies:
-V
1000 299 ¢ dx;
2 _ 24.3.44] 0100 000 O dx
as)? =[axaxcaxeax] 5399 « 395 9 99 15.78
000-1 -v O2vd><l cdx?
c c2dx*
Executing the operations of the second term we have:
-V
0 00 < dx;
dxtdxdxiedy| 0 90 0 dx _'delCdX +cdx* = dx1+2Vd)<1 cdx* =zero
0 00 O dx® c c2 dx?
2VdX1 cadx’
c c?dx*
Then we have:
-V
0 00 < dx;
00 O dx= _
dx‘dx?dx’cdx’ 0 00 0 e "Zero 15.79
-V 2VdXl cdx*
c c?dx*
With this result we have in 15.78 the invariance of the line differential element:
1000 dx
2
ds)? =[dxtdx2dx3cdx] 8%)(1)8 g§3 =(dxt)?+(dx2)*+(dx3)?- (cdx+)*=(ds)’ 15.80
000-1 cdx

In 87 as a consequence of 5.3 we had the invariance of EU=E'U" where now applying 7.3.1, 7.3.2, 7.4.1,

7.4.2 and the velocity transformation formulae from table 2 we have new relations between EX and E'X
distinct from 7.3 and 7.4 and with them we rewrite the table 7 in the form below:

Table 7B
e Exv/K Exe E'x'«/F
1- v 7.3B + 7.4B
ux u'x
E'y'=Ey/K 731 | EYEEYVK 7.4.1
E'z'=EzVK 232 | EzZ=E'ZVK 742
B'x'= BX 7.5 Bx=B'X' 7.6
1 1 V 1 1 VI 1 1
Bly=BytzE2 751 | BYSBY-5FE2 7.6.1
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B'z'=Bz Cley 752 Bz=B' z'+;/—2 E'y 76.2
—_ ux ) — u' X' [
By=-=Fz 7.9 BYy=-"=Fz 7.10
ux o UX
Bz== By 791 | BZ=ZFY 7.10.1
Y 1Y
ux = ux

With the tables 7B and 9B we can have the invariance of all Maxwell's equations.
Invariance of the Gauss’ Law for the electrical fie  Id:

1Ex JEY fEZ _r
x v 2 e

Where applying the tables 6, 7B and 9B we have:

1,v T ExK  IEWK Ez/K_rJK
x c2ft (I- viux) Ty 1z e,

Where simplifying and replacing 8.5 we have:

1,11 Ex Ty Ez s
x  uxfx (-viux) Ty Tz e

That reordered supplies:

ll_l Ex +ﬂEy+£Z_/’
™ ux (-viux) Ty Tz g

That simplified supplies the invariance of the Gauss’ Law for the electrical field.
Invariance of the Gauss’ Law for the magnetic field

18, IBY 182
x fy 12

=Zero

Where applying the tables 7B and 9B we have:

T T gy I By+ L E2 + 1 Bz L Ey =0

x c21t Ty 1z

That reordered supplies:

1Bx, 1By 1Bz, v fEz_ fEYy_ fBx

=0
™ Ty Tz c2 Iy Tz 1t

8.14

8.16

Where the term in parenthesis is the Faraday-Henry’'s Law (8.19) that is equal to zero from where we have

the invariance of the Gauss’ Law for the magnetic field.

Invariance of the Faraday-Henry's Law:

1EY EX_ 1BZ
x T fit
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Where applying the tables 7B and 9B we have:

T,vy T BVK el v
‘|1x+c2 it EyWK ‘ﬂyil— v/ux) R‘ﬂt Bz Cc2 Ey

That simplified and multiplied by (1- v/ux) we have:

@1 v _fEx_ LBZ]_ v
x ux Ty qt ux

Where executing the products and replacing 7.9.1 we have:

By fEx__1Bz v fEYy_ uxiEy
™>x Ty ft ux fx c2 1t

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry's Law.

Invariance of the Faraday-Henry's Law:

1Ez_TEY _ 1BX

. 7 Tt 8.20

Where applying the tables 7B and 9B we have:
TEZ e JBY o= s IBx
iy 1z Tt

That simplified supplies the invariance of the Faraday-Henry's Law.

Invariance of the Faraday-Henry's Law:

fEX_fEZ_ fBY
1z X qit'

8.22

Where applying the tables 7B and 9B we have:

1 ExXK  f,v1 N B
Tz viu) X e 1t Ez/K= Rﬂt By*c B2

That simplified and multiplied by (1- V/UX) we have:

Iz 9x ux c2 qt ux qt ux c2 |t ux

TEx €z, v _viEz, v _fBy v VviEz, Vv

That simplifying and making the operations we have:

1Ex fEz_ 1By v 9Ez_ 1By
1z T it ux fx 1t

Where applying 7.9 we have:
1Ex fEz__ TBy v fEz uxfEz
z Tx it ux fx c2 Tt
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry's Law.

Invariance of the Ampere-Maxwell's Law:

:/733'2”90”3% 8.24

1BY fBX
<

Where applying the tables 6, 7B and 9B we have:

T1,v 1
x czqt

TBx_
iy

By+ LEz - 1= ppazve, mK %Ezﬁ

That simplifying and making the operations we have:

BY_1Bx
x Ty

ngﬂEz+ 1v29qEz 12vuxyEz v YEz v 1By 1 v29Ez
ft c2c2 ft c2 c2 9t c2 x c2 ft c2c? t

=mJz+e,

Where simplifying and applying 7.9 we have:

By fBx_

fEz 1 2vuxfEz v YEz v -uxfEz
=mJzt+e —

Mftt c2 cz2 ft c2fx c2 c2 1t

That reorganized supplies

B

By ﬂBX:nng+eOngﬂEZ v uxfEz fEz

> Ty it c2 c2 it 9x
As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell's Law:

Invariance of the Ampere-Maxwell's Law:

B8z TBY
v 1z

=ngJ'x+eongﬂ$% 8.26

Where applying the tables 6, 7B and 9B we have:

1o Ve T BV Er o 1 Ex/K

Ty Bz = Ey 0z By+C2 Ez =m(Ix rv)+eong«/K7—Ht Vs

Making the operations we have:

fBz_fBY_ v TEy 1EZ _ ., vz 2vux JEx 1
v 9z M 2 Ty T O Te b e Mt (1- v/ux)

Replacing in the first parenthesis the Gauss’ Law and multiplying by 1- u_VX we have:

fEx, v 1Bz 1By w - VIEx vz 19Ex  1v2iEx 1 2vuxfEx
Ty 9z

+ +
My Jx €y My M ux Ty 9z c2 fx ¢ uxfx c2c2 ft c2 c2 Tt

Where replacing JX=rux, 7.9.1, 7.9 and 8.5 we have:

fBz_1BYy_
Ty 9z

1Ex, v uxfEy_ uxfEz
it uxczqy c2 9z

v IEx vz -19Ex | 1 Vv2YEx_ 1 2vuxfEXx
c2 fx c2 c2 Mt c2cz ft c2 c? 1t

mJx+e,m mrux -
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That simplified supplies:

v Ex 1 2vuxiEx
cz x c2 c2 "t

1Ex, v fEy_ fEZz
ftt ¢z Ty 1z

nch,' -

Replacing in the first parenthesis the Gauss’ Law we have:

{Ex v {EX Vv {EX 1 2vuxiEX
fft c2 x c2 qx c2 c2 1t

1B2_1BY
Iy 1z

=myJIx+e,m

That reorganized makes:

1B2_fBy
Ty 1z

{EX 2v 'ﬂEx uxEx
it cz fix c2 qt

=mJx+e,m

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell's Law:

Invariance of the Ampere-Maxwell's Law:

BX_1BZ _ ‘HE'Y

Where applying the tables 6, 7B and 9B we have:

8.28

Bx 1,vy
e 'ﬂx+02 i Ey =mJy+e, /73\/_ Ey«/_

Making the operations we have:

TE Y, 1v2YEy 1 2vuxiEy v ‘HEy v Bz 1 v2IiEy
qt 02 c2 ft cz2 c2 Mt c2 9x 02 ft c2c2 |t

1Bx_fBz
z 9

Where simplifying and applying 7.9.1 we have:

o —MIy+rem

TEy 1 2vuxiEy v‘ﬂEy v uxfEy

fBx_1Bz_
%Jy 0”6 ﬂt c2 ¢c2 ﬂt c2 ﬂX C2 c? ﬂt

z 9x

That reorganized makes:

{Bx 1Bz TEy v uxEy, fEY
1z I =mIytem Mt c2 c2 ft I

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell's Law:

Invariance of the Gauss’ Law for the electrical fie  Id without electrical charge:

1Ex JEY IEZ

> . Tz =zero 8.30

Where applying the tables 7B and 9B we have:

1,.vT ExvK ﬂny/_ EzZ/K

™ ce Tt (1- v/ux) Iy 7 o

Where simplifying and replacing 8.5 we have:
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RIS Ex_,TEY,EZ_s6r0

x  uxfx (- v/ux) Ty 9z
That reorganized makes:

‘H_ Ex TEy Ez

x v fy gz 2o

That simplified supplies the Gauss’ Law for the electrical field without electrical charge.
Invariance of the Ampere-Maxwell's Law without elec  trical charge:

1BY BxX _ E'Z
"y g

8.40

Where applying the tables 7B and 9B we have:

,ve Ve, IBx_ )
‘ﬂx+c2‘ﬂt By+C2Ez Y eong«/_ EZ\/_

Making the operations we have:

By Bx_ fEz, 1 v2{Ez 1 2vuxyEz v YEz v 1By 1 v29Ez
™ fy ©°qt c2c2ft c2 c2 ft c2 fx c2 ft c2c? vt

Where simplifying and applying 7.9 we have:

By fBx_, ,,MEz 1 2vuxfEz v Ez v -uxfEz
x My ©°q c2c2 ft c2x c2 c2 fqt

That reorganized makes:

E’-@=eongﬂEZ v uxfEz, JEz
™~ 9y ft c2 c2 ft 9x

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell's Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without elec  trical charge:

182 _TBY _  fEX
vz o g

8.42

Where applying the tables 7B and 9B we have:

Vo, 1 1 Ex/K
Bz C2Ey 2 By+ Ez eongf7—5t Vi

Making the operations we have:

T
y

Bz fBy_v fEY, EZ
fy Mz c2 fy 1z

vZ 2vux Ex 1
+ I+—-
M T T gt (1- v/ux)

Replacing in the first parenthesis the Gauss’ Law without electrical charge and multiplying by (1- v/ UX) we
have:
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1Bz 1By_, ,TEx, v fBz By v fEx,v2 19Ex , 1v2fEx 1 2vuxyEx
v Tz 2°M ux fy Tz c2qx c2 uxfx c2c2 ft c2 c2 Tt

Where replacing 7.9, 7.9.1 and 8.5 we have:

1Bz 1By_, ,TEx v uxfBy uxfEz v fEx,v2 -11Ex , 1v?fEx 1 2vuxyEx
vy 9z ©°q uxc2fy c29z c29x c2c2ft c2¢c2 ft c2 c2 Tt

That simplified supplies:

1Bz 1By_, . fEx, v TEy fEz v fEx 1 2vuxfEx
v Mz ©°M c2 Ty Tz c2fx c2c2 Tt

Replacing in the first parenthesis the Gauss’ Law without electrical charge we have:

1Bz 1By_, ,, fEx v fEx_ v fEx 1 2vuxyEx
Iy Tz ©°M c2fx c2fx c2 cz 1t

That reorganized makes:

Bz _TBYy_
Ty 19z

EX 2v YEx_ uxfEx
MPEET G 2 T Tor

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell's Law without electrical charge:

Invariance of the Ampere-Maxwell's Law without elec  trical charge:

IBx 1BZ IE'Y

T X =e,m it 8.44

Where applying the tables 6, 7B and 9B we have:

Bx T,v" VEey = all
e 'ﬂx+c2'nt Bz CZEy eongx/?ﬂtEy«/K

Making the operations we have:

1Bx 1Bz_, . TEY 1v2iEy 1 2vuxfEy vIiEy v Bz 1 v2iEy

Iz qx ° ft c2c2 Mt c2 c2 ft c2 x c2 Mt c2c2

Where simplifying and applying 7.9.1 we have:

TBx Bz_, 1By 12vuxfEy v IfEy, v uxfEy
z Tx ©°f c2cz ft c2fx c2 c? ft

That reorganized makes:

Bx_1Bz_ fEy v uxfEy TEy

=€

1z X 078 ft c2c2 it 1x
As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell's Law without electrical charge:
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8§15 Invariance (continuation)
A function f (q) =f (kr - Wt) 2.19
Where the phase is equal to g = (kr - Wt) 15.81

In order to represent an undulating movement that goes on in one arbitrary direction must comply with the
wave equation and because of this we have:

= Zzero 15.82

£23r_(xz+y2+22) ﬂf() 2(X +y +22\ﬂ f() kzﬂf()

r r flg 19° 197
That doesn’t meet with the wave equation because the two last elements get nule but the first one doesn't.
In order to overcome this problem we reformulate the phase @ of the function in the following way.

A unitary vector such as

n =cosfi +cosaj +cosbk 15.83
X_ X z z

where COS =—=—, cosa :X:X, cosb=—=— 15.84
r ct r ct r ct

has the module equal to N =|n|=+/nn =/cos’ f +cos’a +cos’ b =1. 15.85

Making the product

2 2 2 2
nR:(cos‘i +cosgj +cosbk).(xi +VYj +zk):cos‘x+c0$y+cosbz:%:%:r 15.86

we have I = NR =C0Sfx+c0say + cosbz that applied to the phase g supplies a new phase
F =(kr- vvt)=(|<nR- wt):(kcosfx+ kcosay +kcosbz- wt) 15.87

with the same meaning of the previous phase g=F .
. W -
Replacing r = NR=cosfx+cosay + cosbz e k=— in the phase g multiplied by —1 we also get another
Cc

phase in the form

r cosfx +cosay + cosbz
F=(-2)(kr- wt)=(wt- kr)= wt-— = wt- y 15.88
C C
with the same meaning of the previous phase (- 1)(/ =F.
Thus we can write a new function as:
cosx+cosay+cosbz
f(F)=f wt- y 15.89
C
That replaced in the wave equation with the director cosine considered constant supplies:
f f 2f(F)w? f(F
r (2 F)w W cogr+ 1 1EF) (F)w —-cos' a +ﬂ—(2)—zco§b i (2 )——zero 15.90
F c? IF? c? IF c TF c?

that simplified meets the wave equation.
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The positive result of the phase F in the wave equation is an exclusive consequence of the director cosines
being constant in the partial derivatives showing that the wave equation demands the propagation to have
one steady direction in the space (plane wave).

For the observer O a source located in the origin of its referential produces in a random point located at the
distance r =Ct=w/X2 +y2+Z2 of the origin, an electrical field E described by:

E=Ex +Eyj + Exk 15.91

Where the components are described as:

Ex=E,.f(F)
Ey=E,.f(F) 15.92
Ez=E,.f(F)

That applied in E supplies:

E=Ef(F)i +E,f(F)j +E, f(F)k =|Eoi +E,.j +E,J]f(F)=E,(F). 15.93
with module equal to E :\/ (E.) +(Eyo)2 +(E, ) .f(F) E=E,f(F) 15.94
Being E, =E, i +E,,j+E,k 15.95
The maximum amplitude vector Constant with the components Es, Eyo, Ezo 15.96
and module E, =/(E,, ] +(E,.f +(E,.) 15.97

Being f (F) a function with the phase F equal t0o15.87 or 15.88.

Deriving the component E, in relation to x and t we have:
T (F)kx_ _ 9 (F)kx
Exo -

fEx_g M (F)IF _ g I (F ) (ke - wt) E, KX 15.98
x IF  9x = Mx I r TF ct

TEx_ T(F)IF _ 9 (F)N(kr-wt)__ ‘Hf(F)(

ﬂt ~ =xo 1-“: ﬂt ~ =xo 1-“: ﬂt X0 1-“:

that applied in 8.5 supplies

- W) 15.99

E(.*.X_/t@(:zero ll (F)ﬂF +X/tE ll (F)ﬂF =zero E M £+X—/tE =zero
x c® qt “ qF fx c* *° gF Tt “ qF Ix c* Tt
M E+X—“E =zero E+X—/tE:zero 15.100
“qF  Ix c® 1t ix c Tt

demonstrating that it is the phase F that must comply with 8.5.

E+i2tﬁzzero ‘ﬂ(kr— Wt)+X/2t ‘ﬂ(kr— Wt) &(+X—/2t( w):zero X k - w =zero
ix c° 1t ix (o qt ct c ct C

w . .
as K =— then E, complies with 8.5.
c
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As the phase is the same for the components E, and E, then they also comply with 8.5.

As the phases for the observers O and O’ are equal (kr- Wt)=(k' r'-Wt') then the components of the
observer O’ also comply with 8.5.

k- wt), x/t f(kr-wt) _fil r-we) x/t ik r-wt)

> > =Zero 15.101
Ix c qt © c qt'

The components relatively to the observer O of the electrical field are transformed for the referential of the
observer O’ according to the tables 7, 7B and 8.

Applying in 8.5 a wave function written in the form:

Y =k =& =cogkx- wt)+isin(kx- wt)=cosF +isinF 15.102
where | = \/j.
Deriving we have:
1]”—Y =-kserF +kicosF and ﬂ =wsenF - wicosF 15.103
X
or ﬂ:kéF and ﬂ:-wéF 15.104
Ix qt

That applied in 8.5 supplies:

Y XW e (- kserF +kicosF)+X—/t(wserF - wicosF ) = zero
x c? Mt c?

that is equal to:

XW . . XWi
- k+—2 sinF + ki- — cosk = zero
ct ct

r%(+xc—g[%:zero (ke’F) )::/t( WéF):zero

where we must have the coefficients equal to zero so that we get na identity, then:

XW XW
- k+——zero k:—2
c’t ct
. Xwi XW
k|‘—2—ZerO k:_2
ct ct
x/t i XW
(kéF) — ( We'F):zero ==
C ct

Where applying W = ckwe have:

k=

XW _ xck X
¢

c’t ¢

Then to meet with the equation 8.5 we must have a wave propagation along the axis x with the speed c.
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X
If we apply W=UK and v = Twe have:

A result also gotten from the Louis de Broglie’s wave equation.
816 Time and Frequency
Considering the Doppler effect as a law of physics.

We can define a clock as any device that produces a frequency of identical events in a series possible to be
enlisted and added in such a way that a random event n of a device will be identical to any event in the
series of events produced by a replica of this device when the events are compared in a relative resting
position.

The cyclical movement of a clock in a resting position according to the observer O referential sets the time in
this referential and the cyclical movement of the arms of a clock in a resting position according to the
observer O’ sets the time in this referential. The formulas of time transformation 1.7 and 1.8 relate the times
between the referentials in relative movement thus, relate movements in relative movement.

The relative movement between the inertial referentials produces the Doppler effect that proves that the
frequency varies with velocity and as the frequency can be interpreted as being the frequency of the cyclical
movement of the arms of a clock then the time varies in the same proportion that varies the frequency with
the relative movement that is, it is enough to replace the time t and t' in the formulas 1.7 and 1.8 by the
frequencies y and y’ to get the formulas of frequency transformation, then:

t=tJK y = y\/E 1.7 becomes 2.22
t=t JK' y=y JK' 1.8 becomes 2.22

The Galileo’s transformation of velocities U'=U - V between two inertial referentials presents intrinsically
three defects that can be described this way:

a) The Galileo’s transformation of velocity to the axis x is U' X =UX- V. In that one if we have UX=C then
U X =c- vand if we have U X =C then UX=C+V. As both results are not simultaneously possible or else

we have UX=C or U X =C then the transformation doesn’t allow that a ray of light be simultaneously
observed by the observers O and O’ what shows the privilege of an observer in relation to the other because
each observer can only see the ray of light running in its own referential (intrinsic defect to the classic
analysis of the Sagnac’s effect).

b) It cannot also comply to Newton'’s first law of inertia because a ray of light emitted parallel to the axis x
from the origin of the respective inertial referentials at the moment that the origins are coincident and at the
moment in which t =t = zero will have by the Galileo’s transformation the velocity ¢ of light altered by *V to
the referentials, on the contrary of the inertial law that wouldn’t allow the existence of a variation in velocity
because there is no external action acting on the ray of light and because of this both observers should see
the ray of light with velocity c.

c) As it considers the time as a constant between the referentials it doesn’t produce the temporal variation
between the referentials in movement as it is required by the Doppler effect.

The principle of constancy of light velocity is nothing but a requirement of the Newton'’s first law, the inertia
law.

Newton'’s first law, the inertia law, is introduced in Galileo’s transformation when the principle of constancy of
light velocity is applied in Galileo’s transformation providing the equation of tables 1 and 2 of the Undulating
Relativity that doesn’t have the three defects described.

The time and velocity equations of tables 1 and 2 can be written as:
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[ 2
t'=t 1+V—2- &cosf 1.7
C Cc

V= - 1.15
1+—- 2Vcosf
Cc C
2
=t 1 o o 18
C C
V= - v 1.20
1+v—2+ﬁc09"
C C

The distance d between the referentials is equal to the product of velocity by time this way:

d=vt=vt 1.9

It doesn’t depend on the propagation angle of the ray of light, being exclusively a function of velocity and
time, that is, the propagation angle of the ray of light, only alters between the inertial referential the
proportion between time and velocity, keeping the distance constant in each moment, to any propagation

angle.

The equations above in a function form are written as:

d=elvt)=e(v t) 1.9
t=f(vtrf) 1.7
v =g(v.7) 1.15
t=f'(v t,r) 1.8
v=¢ (\/ ,f') 1.20

Then we have that the distance is a function of two variables, the time a function of three variables and the
velocity a function of two variables.

From the definition of moment 4.1 and energy 4.6 we have:

E
p=—2U 16.1
Cc

The elevated to the power of two supplies:

2

u - _cC 2
= p 16.2
c? E?

Elevating to the power of two the energy formula we have:
2

g MC g e’ e
u? c?
1-
C2

Where applying 16.2 we have:
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2 2
EZ-E“CJ—2=m§c4 EZ-EZ%p2=m§C4 E=c|p?+mic? 48

From where we conclude that if the mass in resting position of a particle is null m, = zero the particle
energy is equalto E=cp. 16.3
That applied in 16.2 supplies:

u

u?_c?
c? E?

u=c 16.4

From where we conclude that the movement of a particle with a null mass in resting position m, = zero will
always be at the velocity of light u=C.

Applying in E =c p the relations E=yh and c=yl we have:

_ ._h
yh=vl p p:|— and in the same way ] 27 16.5

Equation that relates the moment of a particle with a null mass in resting position with its own way length.

Elevating to the power of two the formula of moment transformation (4.9) we have:

2
p=p-Sv p’=p*+Eve- 2Evpx
C C C

Where applying E=c p and px=pcos = p% we find:
c

2 2
2v
p'2:p2+(ccp4—) vi-2Zwp pEpfl- T pepdk 16.6

Where applying 16.5 results in:

h h / /'
'=pJK —=—+K /'=—— orinverted / =—— 2.21
PP Il JK JK'
Where applying c=Yy/ and c=Y'/' we have:
y=yJK orinverted y = y JK' 2.22

In § 2 we have the equations 2.21 and 2.22 applying the principle of relativity to the wave phase.
817 Transformation of H. Lorentz

For two observers in a relative movement, the equation that represents the principle of constancy of light
speed for a random point A is:

X.2

y'2z' 2.cf' 2=x%+y?+z%-c1? 17.01
In this equation canceling the symmetric terms we have:
x'2-ct'?=x?-c%? 17.02

That we can write as:
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X' -ct' X' +ct' )=(x-ct )(x +ct ) 17.03
If in this equation we define the proportion factors /7 and /mas:

X' -ct')=h(x-ct) A

ot )=mfx+ct) B Lrod

where we must have /. /77=1 to comply 17.03.

The equations 17.04 where first gotten by Albert Einstein.

When a ray of light moves in the plane y'z' to the observer O’ we have x' = zero and x = vt and such
conditions applied to the equation 17.02 supplies:

2
0-cfr2=(vt ?-c%? t'=t [1- Y5 17.05
c

This result will also be supplied by the equations A and B of the group 17.04 under the same conditions:

2
0-ct J1- Yo =h(vt -ct) A
c

17.06
v 2
O+ct ,[1- o =mvt +ct) B
From those we have:
17.07
Where we have proven that /2. m=1.
From the group 17.04 we have the Transformations of H. Lorentz:
. _(h+n)_  (n-n)
X = X+ C 17.08
2 2
+
ct' = (m- h)x +(/7 ”)c 17.09
2 2
(h+n). (h-n)_..
X = X'+ C 17.10
2 2
- +
ct = (/7 ”?( ' +(/7 n)ct' 17.11
2 2
Indexes e uationsh+ m m-h and h- .
a 2 2 2
\' \'
1+ 1- 1+—+1- = h+
m
ht e N c ¢ 2 -1 17.12

v v

C C = =

v \ v v 2 2 2
- += Vv v v v
! c ! c \/1 C\/1+C \/1'02 1-C
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v +Vv A A _ 9oV v
m h= S - " S : °c 2 m2/7: C 2 17.13
e Fe Jl* Jl Jl' z e
c
v v V_14V v v
b 1+\CI ] 1- \CI + 1+ 2 h_2m= c : 714
o 1t \/1' \/1+ \/1- 1- Vo
c

Sagnac effect

When both observers’ origins are equal the time is zeroed (t = t' = zero) in both referentials and two rays of
light are emitted from the common origin, one in the positive direction (clockwise index c) of the axis x and X’
with a wave front A. and another in the negative direction (counter-clockwise index u) of the axis x and x’
with a wave front A,.

The propagation conditions above applied to the Lorentz equations supply the tables A and B below:

Table A
Equation Clockwise ray (c) | Equation Counter-clockwise ray (u) | Sum of rays

Result Result
Condition X, =Ct Condition X, =-ct
17.08 = et 17.08 u=- hct "

X' o =X, X', =X, X' K", =X, HhX,
17.09 ct' . =nct 17.09 t', =hct ct' . +ct' ,=nct . +hct

X' .=ct', X"',=-ct',
Table B
Equation Clockwise ray (c) Equation Counter-clockwise ray (u) | Sum of rays

Result Result
Condition c =ct' c Condition X ' u=- ct' u
17.10 =hct' 17.10 X, =- nct'

XC:IXIC XU:ﬂIU XC+XU:,XIC+M'U
17.11 ct . =hct' 17.11 ct , =mct' ct . +ct , =hct'  +nct'
¢ =Ct 4 =-ct,

We observe that the tables A and B are inverse one to another.

When we form the group of the sum equations of the two rays from tables A and B:

D' =ct'
D=ct .

L Het', = met

=hct'

. thet A
et B

17.15
+ct

Where to the observer OD' =A, « A, is the distance between the front waves A, and A; and where to the

observer O D=A, « A, is the distance between the front waves A, and A..

In the equations 17.15 above, due to the isotropy of space and time and the front waves A, « A, of the

two rays of light being the same for both observers, the sum of rays of light e times must be invariable
between the observers, which we can express by:
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D'=D ct' +ct’' ,=ct +ct, t'=1t 17.16

This result that generates an equation of isotropy of space and time can be called as the conservation of
space and time principle.

The three hypothesis of propagation defined as follows will be applied in 17.15 and tested to prove the
conservation of space and time principle given by 17.16:

Hypothesis A:

If the space and time are isotropic and there is no movement with no privilege of one observer considered
over the other in an empty space then the propagation geometry of rays of light can be given by:

ct .|=lct' | and [ct ,,|=(t’ 17.17
ot | =fet’ | and et [=(ct" |

This hypothesis applied to the equation A or B of the group 17.15 complies to the space and time
conservation principle given by 17.16.

The hypothesis 17.17 applied to the tables A and B results in:
ct' . =nmet' A

Quadro A
ct' ,=hct' B

17.18
ct . =fct C

Quadro B
ct,=nmt D

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in an empty space
then the geometry of propagation of the rays of light is given by:

lct ¢|=[ct 4 |=fet | 17.19

That applied to the table A and B results in:

ct' . = net A
Quadro A
ct' , =hct B
17.20
ct =hct' C
Quadro B
ct =nmet' D
ct . =mfct, A
17.21
ct' u:/72ct' c B
Summing A and B in 17.20 we have:
+ +
ct' +ct' , =2t htm oo _ph*m 5o D oyt 17.22
2 2 v 2 v 2
1- 1-
c? c?

This result doesn’t comply with the conservation of space and time principle given by 17.16 and asD' 1 D it
results in a situation of four rays of light, two to each observer, and each ray of light with its respective
independent front wave from the others.

Hypothesis C:

If the space and time are isotropic but the observer O’ is in an absolute resting position in an empty space
then the propagation geometry of the rays of light is given:

ct' o=kt | =ft’ | 17.23
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That applied to the tables A and B results in:

ct' =met A
Quadro A
ct' =hct B
17.24
ct . =hct’ C
Quadro B
ct , = net' D
ct . =h’ct, A
17.25
ct, =nfct B
Summing C and D in 17.24 we have:
+ + ' '
ot 4ot =2t 1EM pp AEM po D o U 17.26
2 2 v 2 v 2
1- 1-
c? c?

This result doesn’'t comply with the conservation of space and time principle exactly the same way as
hypothesis B given by 17.16 and asD' 1 DD' 1 D it results in a situation of four rays of light, two to each
observer and each ray of light with its respective independent front wave from the others.

Conclusion

The hypothesis A, B and C are completely compatible with the demand of isotropy of space and time as we
can conclude with the geometry of propagations.

The result of hypothesis A is contrary to the result of hypothesis B and C despite of the relative movement of
the observers not changing the front wave A, relatively to the front wave A, because the front waves have
independent movement one from the other and from the observers.

The hypothesis A applied in the transformations of H. Lorentz complies with the conservation of space and
time principle given by 17.16 showing the compatibility with the transformations of H. Lorentz with the
hypothesis A. The application of hypothesis B and C in the transformations of H. Lorentz supplies the space
and time deformations given by 17.22 and 17.26 because the transformations of H. Lorentz are not
compatible with the hypothesis B and C.

For us to obtain the Sagnac effect we must consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the path of the rays of light be of 20R:

ct' . =ct' ,=ct' =20R 17.27

For the observer O the Sagnac effect is given by the time difference between the clockwise ray of light and
the counter-clock ray of light [t =t . -t , that can be obtained using 17.24 (C-D), 17.27 and 17.14:

oV
_ ' _2PR c _  4pRv
o=t .-t,t'(h-m= = 17.28
C 2 2 2
1- Y cVecl-v
c
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89 The Sagnac Effect (continuation)

The moment the origins are the same the time is zeroed (t = t' = zero) at both sides of the referential and the
rays of light are emitted from the common origin, one in the positive way (clockwise index c) of the axis x and
X" with a wave front A. and the other one in the negative way (counter clockwise index u) of the axis x and x’
with wave front A,

The projected ray of light in the positive way (clockwise index c) of the axis x and X' is equationed by
X, =Ct . andX' . =ct' . that applied to the Table | supplies:

Vv Vv
ct' . =ct, 1- ?C ct' . =ct K, (1.7) ct . =ct', 1+TC ct . =ct’' ;K. (1.8) 9.11
V V VI Vl
Vie=—= — v, :K—C (1.15) v,=—=S— v, :KC (1.20) 9.12
1. Ve ¢ 1 e c
c c

From those we deduct that the distance between the observers is given by:
d,=v t. ¥t 9.13

Where we have:

-8 14 =KK =1 9.14

The ray of light project in the negative way (counter clockwise index u) of the axis x and x’ is equationed by

X, =-Ct , andX'  =-ct',:that applied to the Table I gives:

\Y \
ct', =ct 1+?u ct',=ct K, (1.7) ct, =ct', 1- T“ ct, =ct' K, (1.8) 9.15
1 VU 1 Vu \%) I u Vv ' u
Vs VieTge (1.15) VyE—o— VuT (1.20) 9.16
1+V7U u 1_V u u
c c

From those we deduct that the distance between the observers is given by:
dy=vit, ¥'§ 'y 9.17
Where we have:

1e 1 =K K, =1 9.18
We must observe that at first there is no relationship between the equations 9.11 to 9.14 with the equations

9.15t0 9.18.

With the propagation conditions described we form the following Tables A and B:
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Table A

Equation %ﬁgl@;\;ise ray - of Equation ﬁ;ohlin(he)r clockwise ray of Sum of the rays of light
Result Result
Condition |X; =Ct . Condition |X, =-Ct
1.2 X' =ct K, 1.2 x',=-ct K,
X' . =XKe X', =X,K, K ' X' =X K XK,
1.7 ct' . =ct (K, 1.7 ct' ,=ct K, ct' . +ct'  =ct K, +ct K,
X', =Ct', X', ,=-ct',
Table B
Equation ﬁ:;aglzx\;ise ray o Equation ﬁ;ohutn(he)r clockwise ray of Sum of the rays of light
Result Result
Condition X' =ct', Condition X' ,=-ct',
14 |[X, =ct' (K, 14 |[x,=-ct' K,
Xe X' K X, X' Ky, Xe X, X' K %' K,
1.8 ct . =ct' K, 1.8 ct, =ct' K, ct . +ct , =ct' (K +ct' K,
X, =Ct X, =-ct,

We observe that for the rays of light with the same direction the Tables A and B are inverse from each other.
Forming the equations group of the sum of the rays of light of the Tables A and B:

D' =ct' . +ct'  =ct K, +ct K, A
D=ct . +ct , =ct' K. +ct' | K, B

9.19

Where for the observer O'D" =A, « A, is the distance between the wave fronts A, and A; and where for

the observer O D=A,, « A, is the distance between the wave fronts A, and A..

In the equations above 9.19 due to the isotropy of the space and time and the wave fronts A, « A, of the

rays of light being the same for both observers, the sumo of the rays of light and of times must be invariable
between the observers, which is expressed by:

D'=D ct' +ct’' ,=ct +ct, t'=1t 9.20

This result that equations the isotropy of space and time can be called as the space and time conservation
principle.

The three hypothesis of propagations defined next will be applied in 9.19 and tested to prove the compliance
of the conservation of space and time principle given by 9.20. With these hypotheses we create a bond
between the equations 9.11 to 9.14 with the equations 9.15 to 9.18.

Hypothesis A:

If the space and time are isotropic and there is movement with any privilege of any observer over each other
in the empty space then the propagation geometry of the rays of light is equationed by:

cto=ct', t. %', v.¥', K;=K, A
¢I

9.21

cty=ct', t,#¥', v,¥', K,=K, B
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With those we deduct that the distance between the observers is given by:

d.=d,=vt . ¥'t'.=vit, ¥}, 9.22
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct . =ct, =ct A
V. =V, =V B 9.23
Vi, =vt, =vt C

With those we deduct that the distance between the observers is given by:

d.=d,=vt ¥'t'.¥'t"' 9.24

u

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

Hypothesis C:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct' . =ct' ,=ct’ A
vi.wv',wv' B 9.25
vit'.w'p vt C

With those we deduct that the distance between the observers is given by:

d.=d, ¥t'=vt, =vt, 9.26
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of

light are compensated in the referentials.

In order to obtain the Sagnac effect we consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the rays of light course must be of 20R:

ct' . =ct' ,=ct' =20R 9.27

Applying the hypothesis C in 9.11 and 9.15 we have:

t ot K, t %' 1#’? 9.28
' A
tyd' Kyt 1 9.29

For the observer O the Sagnac effect is given by the time difference between course of the clockwise ray of
light and the counter clock ray of [t =t . -1, that can be obtained making (9.28 — 9.29) and applying 9.27
making:
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£ 1 g0 gV SR ARV 9.30

21t :2Vctc _At,

c c ¢ is exactly the result obtained from the geometry analysis of

the propagation of the clockwise and counter clockwise rays of light in a circumference showing the
coherence of the hypothesis adopted by the Undulating Relativity.

The equation [ =

In 9.30 applying 9.12 and 9.16 we have the final result due to V. and V ;:

't ' 4pRv 4pRv
o=, -t, =21 :4pF§V: szC = Z'URU 9.31
c c c°-cv, Cc eV,
The classic formula of the Sagnac effect is given as:
o=t -t, =RV 9.32
c -v
From the propagation geometry we have:
C

The classic times would be given by:

t =2R 9.34
C

t,=2R 9.35
c-v

=R 9.36

c+v

Applying 9.34, 9.35 and 9.36 in 9.33 we have:

o =2 2R _4mRv 9.37

cC C c?
& 2R _ 4pRv 9.38
° cle-v) c2-cv

_N 2R _ 4pRv 9.39

"o letv) c24cv

The results 9.37, 9.38 and 9.39 are completely different from 9.32.
8§18 The Michelson & Morley experience

The traditional analysis that supplies the solution for the null result of this experience considers a device in a
resting position at the referential of the observer O’ that emits two rays of light, one horizontal in the X’
direction (clockwise index c¢) and another vertical in the direction y'. The horizontal ray of light (clockwise
index c) runs until a mirror placed in x’ = L at this point the ray of light reflects (counter clockwise index u)
and returns to the origin of the referential where x’ = zero. The vertical ray of light runs until a mirror placed in
y' = L reflects and returns to the origin of the referential where y’ = zero.

In the traditional analysis according to the speed of light constancy principle for the observer O’ the rays of
light track is given by:
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ct' . =ct’,=L 18.01
For the observer O’ the sum of times of the track of both rays of light along the x’ axis is:

18.02

u

:£+£:
c C

N
o [N

In the traditional analysis for the observer O’ the sum of times of the track of both rays of light along the y’

axis is:

t', ¢ .4 =L4b=2L 18.03
c cC ¢C

' 2L

As we have t' . =t y :? there is no interference fringe and it is applied the null result of the

Michelson & Morley experience.

In this traditional analysis the identical track of the clockwise and counter clockwise rays of light in the
equation 18.01 that originates the null result of the Michelson & Morley experience contradicts the Sagnac
effect that is exactly the time difference existing between the track of the clockwise and counter clockwise
rays of light.

Based on the Undulating Relativity we make a deeper analysis of the Michelson & Morley experience
obtaining a result that complies completely with the Sagnac effect.

Observing that the equation 18.01 corresponds to the hypothesis C of the paragraph §9.

Applying 18.01 in 9.19 we have:

D' =ct' . +ct' ,=ct K, +ct ,K, D'=L+L=ct K, +ct K, A
18.04
D=ct . +ct , =ct' ;K . +ct' ;K , D=ct,+ct, =LK +LK ,=L(K . +K,) B
From 18.04 A we have:
1 — —_ VC Vu — —_
D'=2L=ct. 1- < +ct 1+? D'=2L=ct -vt,+ct +vt, 18.05
Where applying 9.26 we have:
D' =2L =ct , +ct tX:tC+tu:% 18.06
In 18.04 B we have:
V' v'
D=ct +ct , =L 1+—= + 1-—*% 18.07
C c
Where applying 9.25 B we have:
D=ct +ct  =2L  t, =t +t, :20—'- 18.08

The equations 18.06 and 18.08 demonstrate that the Doppler effect in the clockwise and counter clockwise
rays of light compensate itself in the referential of the observer O resulting in:

_2L

18.09
X c
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Because of this, according to the Undulating Relativity in the Michelson & Morley experience we can predict
that the clockwise ray of light has a different track from the counter clockwise ray of light according to the
formula 18.08 obtaining also the null result for the experience and matching then with the Sagnac effect. This
supposition cannot be made based on the Einstein’s Special Relativity because according to 17.26 we have:

t', ot 18.10

X
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8§19 Regression of the perihelion of Mercury of 7,13

Let us imagine the Sun located in the focus of an ellipse that coincides with the origin of a system of
coordinates (x,y,z) with no movement in relation to denominated fixed stars and that the planet Mercury is in
a movement governed by the force of gravitational attraction with the Sun describing an elliptic orbit in the
plan (x,y) according to the laws of Kepler and the formula of the Newton's gravitational attraction law:

_-GMm,. _- (66710 *19810°)328107). _-k.
2 2

F r=—T 19.01
r r r
The sub index "o0" indicating mass in relative rest to the observer.
To describe the movement we will use the known formulas:
r=rf 19.02
dr _d(rf)_dr. df;
=— == r1+4r—f 19.03
dt dt dt dt
, dar > drf ?
u=uu= — + r— 19.04
dt dt
du_d’r _d’(rf)_d df °. _drdf df .
a=—=——o=—"7 I — - — [+ 2 —+r— f 19.05
dt dt© dt dt dt dtdt dt
The formula of the relativity force is given by:
d u u du u’ du u
p=S M M o, T 35 U= m s LS atu— — 19.06
L T g2 2C dt U c dt c
2 2 L & 1- 2

In this the first term corresponds to the variation of the mass with the speed
later in 19.22 corresponds to the variation of the energy with the time.

With this and the previous formulas we obtain:

and the second as we will see

W d¥ dr . _drdf d*f -
1-— —5- 0 — I+ 2—+r—f +
m, dt dt dtdt  dt
F= NEE ) , , 19.07
U dr d’r  df df _drdf d* 1 dr. df-
- o — A= 24— 5 T+ —f
c dt dt dt dt “dtdt dt® c¢® dt  dt
W dr df > drdx dr ® df _drdf d*f 1dr.
- —-r — + — —-F —  tr— 2——tr— +
2 dt?  dt dt dt®  dt dt dtdt dt> c?dt
e 19.08
1-u“/c w2 _drdf d*¥ drd* df > df _drdf d% rdf -
+ 1-— — + +r 2
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In this we have the transverse and radial component given by:

- o
" 222 2 de

u? 2drdf

- M
F _(—r 1- —
f 1_ u2/C2 3/2 C2 dt dt

dr ?

r_
dt

d?f

+r—-:
dt?

drdr

dt dt?

dr d’r
dt dt?

df df Zdrdf d?f 1o|rF

+r—
dt dt dtdt dt* c?dt

df 2

df _drdf d* rdf -
r— +r— 2 H—— 5 f
dt dt dtdt dt® c?dt

19.09

19.10

As the gravitational force is central we should have to null the traverse component F; =Zero so we have:

u? 2dr drf

F,= -
f 1_ u2/C2 3/2 C2 dt dt

From where we have:

d?f

+r—-:
dt?

pdrd? (A - rdrar
dtdt dt _ c? dt dt
dr  df ° 1 dr
-r — 1  —
dt? dt c? dt

From the radial component . we have:

r

m, dr  df

E = -1 —
e o

That applying 19.12 we have:

2 2
= m, dr df

P —_— —
ey e

That simplifying results in:

dzr_r df 2
a2 dt
R P
\/1_uz 1 1 1 dr’
C ¢ dt

f=zero

dr d df 2 df _drdf d% rdf
— - —  +r— 2 +Hr—
dt dt> = dt dt “dtdt dt? c?dt
o drdf ,d¥ -1dr dr o 2
“dtdt dr  cPdt df  dt
red (L’
dt c® dt
df drdf d2f
2 r— 2 2
o g+ dt dtdt dt 1drf
¢ dt d?r df ¢’ dt
dez  dt
[df v drar
Jut o, dr czdtdt ldr .
¢ dt 1 dr ¢’ dt
ot

This equaled to Newton's gravitational force results in the relativistic gravitational force:

dzr_r df 2
Fo n‘l) dt2 dt - GMOn‘L?_- k?
1 U2 1 dr 2 r2 r2
1-? 1_7 -
c” dt
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As the gravitational force is central it should assist the theory of conservation of the energy (E) that is written
as:

E=E +E, = constant. 19.17

Where the kinetic energy (Ey) is given by:

E, =mc&- mc’=mc® ——-1 19.18

And the potential energy (E,) gravitational by:

Ep:m:i 19.19
r r
Resulting in:
E=mc® 1 =-1 - >=Constant . 19.20
v T
2
C

As the total energy (E) it is constant we should have:

d_E:d_Ek+d—E”:zero. 19.21
dt dt dt

Then we have:

dEk: mu Sdu 19.22
dt 2 *dt
u 2
v
d
dt r°dt
Resulting in:
dE -
E:—O|Ek+—":zero My 3du+k2dr:zero My 3du: L<dr 19.24
dt dt dt . 2dt r2dt . odt r2dt
u u
-2 -

This applied in the relativistic force 19.06 and equaled to the gravitational force 19.01 results in:

m 1k dru—' k? 19.25

a_
\/uz cridt r?

F_

Lo
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In this substituting the previous variables we get:
d’r _df ° . drdf d° . 1kdr dr, df;: -k.
F=_M Soer = f 2 = [ - S T —f =T 19.26
lu2 dt dt dtdt dt cridt dt  dt
CZ
From this we obtain the radial component F. equals to:
dr df* 1k dr’_-k
F="b e L 19.27
u? dt dt cr? dt  r
i
That easily becomes the relativistic gravitational force 19.16.
From 19.26 we obtain the traverse component Ff equals to:
drdf  d’f 1kdrdf
F. = m, 2 Hr— - =zero 19.28
u?> dtdt dt® c°rdtdt
e
From this last one we have:
, drdf  ,d’f
T Ty 2
dtdt  d?_1 k drj, u 19.29
df credt\ ¢ '
29 m,
dt
As the gravitational force is central it should also assist the theory of conservation of the angular moment
that is written as:
L=r" p=constant. 19.30
, . u _ .. dr, df: df (.. df -
L=r" p=r m, ~=rf m, ~ —f+r—f = M, 2rz—(r f) M, = 19.31
u u° dt dt u- dt u>  dt
1- — 1- — 1- — 1- —
Cc C Cc Cc
dr -
L= M 2I’2—|<=Lk=constant. 19.32
u
=
C
d(L)
—==Z€ero 19.33

dL_d(Lk)_d(Lk, Lafk)_d(uk_
dt  dt  dt

dt dt

Resulting in L that is constant.

A

dk
In 19.33 we had —=Z€ero0 because the movement is in the plane (x,y).
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Deriving L we find:

2
d._d m r2df_l mu durzdf m, 2rdrdf+r2df

== 5 > =zZero 19.34
dt dt > dt ¢ dt dt u?  dtdt dt
I LU -
C Cz C
From that we have:
2
2rgg+r2d—£
dt dt d® _ -u dul 19.35
rzg 1- u: dtc? .
dt 2

Equaling 19.12 originating from the theory of the central force with 19.29 originating from the theory of
conservation of the energy and 19.35 originating from the theory of conservation of the angular moment we
have:

H drdf  od*f -1dr dr  df ®
- r _ -

I r —
dtdt  dff cdtd® dt gk dr [ v -u dul
T 5 BT | D i e 19.36
297 1 1 dr mycr- dt C W dtc?

- 1_7

From the last two equality we obtain 19.24 and from the two of the middle we obtain 19.16.

For solution of the differential equations we will use the same method used in the Newton's theory.

Let us assume W=— 19.37
r
. . . iw -1
The differential total of this is dvvzﬂ—dr dvv=—2dr 19.38
r r
dw_-1dr dW - 1dr
From where we have —=—— e —=—— 19.39

df ridf * dt redt

-l u_2 19.40
IT[)I’
dr L dr /
= 1 — 19.41
dt m)r 2df
dr_-Ldw |, U’
Where applying 19.39 we have a—aw 1- —2 19.42
That derived supplies d’ Z drdtd - LdWW/l u—2 19.43
dt® dtdfdt m df
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Where applying 19.40 and deriving we have:

ar pud -ldwi w -LZ/__ g wdwd ) u
dt2 mr*\" ¢cdf mdf\ ¢ df2 ¢® dfdf c?

In this with 19.36 the radical derived is obtained this way:

d u’ -1 udu_ k dr, v _-kdw, U
1' 2 i T T s

dt V- F/ECd mertdt T @ mcdt ¢
_ 2 _ 2
d 1u_ 1 wudu_ k dr u_2: kd_vvl_u_

1-
df V7 @ V1 @#iEddf merldf T @ mddf - &

That applied in 19.44 supplies:

2

c

N

ﬂ:_Lle-f dZW\/_uz_ kK dw’
mer?\" ¢ df? >

¢ mc® df C
Simplified results:

N w

2

d_zr: L’k L v dw "~ L2 u dw
dt* micr®> ¢ df  mfr? o & df?

Let us find the second derived of the angle deriving 19.40:

d’f _d u2 _-2Ldr u?

dt* dt mr? ? myr3 dt _2 myr dt

U

2

In this applying 19.42 and 19.45 and simplifying we have:

w

d’f 2% dw , u* L’k dw L U2
2

df nprPdf T & micrtdf T ¢

Applying in 19.04 the equations 19.40 and 19.42 and simplifying we have:

2 2 2
UZ_L 1_u_2 d_\N +£

n ¢ df r

The equation of the relativistic gravitational force 19.16 remodeled is:

dr df *_ | W . 1.dr® -k

= — 1- =
dt*  dt Tk dt my?

In this applying the formulas above we have:

3 2

L’k w2dw® L2 u® dw L u> U
322 1- 2 ) 2 1= 27T 2 1- P

mcr® ¢ df  nfr? T ¢ dff o myr C
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L2k u?
mic’r® ¢ df

0w
mic’r® ¢ df

nfr

u?d? W L2 u
df2 2

/ u® d’w_ L2 w
nfr dr? o

u’ d’w_ L2
mfr cdr?
d2W+1._ mKk
dar? r u?

LZ\/l-C2
d2W+1._ mjk
df* r

zdf

df? r dr
r+ =
r’rf dt
2
2
dw 1° 1_U7
2t = £
dre r ”U“g
dt
2
2 2 21_U7
dw-2dw 1 ¢
df?  rdf? r? nfrsg
dt
k2
d'w - 2d’w 1_ K 20
dfr?  rdf* r* . df’ dr *
r ré =
m mf ot
K2 dr > df’
- = 4+ r=
diw ", 2dw 1_ K ¢’ dt dt
dr?  rdf? r? df dar *
r8 ré =
g mt ot
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Kdr® K df°

d’w 2+2dzw+i_ kK Zdt & "t
dfr?2  rdf? r? dr * dr * dr *
g ™ g ™ g
2 2
2, 2 2 2 kiz ﬂ 2
d°w +2d W+i_ k o cdf k
df2 df2 2 4 2 2
r r n.ﬁrB dd}: nfrB dd}: n.ﬁCZrG dd}:
2 K adw
d*w +2dzw+i_ k? c? df k?

df*  rdf2 12 L df ¢ L. df ° 2o dF
ré = re = cr® —
g ™ g MO

K2 dw
dw’ 2dw 1 K Fdf K
df?  rdf* v L odf Y L,,df L, df’
re = re = cr® —
g ™ g ™ g

In this we will consider constant the Newton's angular moment in the form:

L:rzg 19.53
dt

That it is really the known theoretical angular moment.

2

dw’ 2dw 1_K K dw’ K
df*  rdf? r® nfl® nfc’l? df el

2

dw dw, e KK dwe K

drz  “dr? Ml el df | mEcL?

2, 2 2 2

37"2" +237V;/W+W2:B-Ag—\;v - AW

daw * d? dw °

d%! +2d7V2VW+Ad_\;‘V +(A+1)w?- B=zero 19.54

Where we have:

k2
Am——— 19.55
L2
k2
= 19.56
mpL
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The equation 19.54 has as solution:

W:i[l- ecos(f«/1+ A+foj W:i[l- ecos(fQ)] 19.57
eD eD

Where we consider f,=zero.

It is denominated in 19.57 Q°=1+A. 19.58

The equation 19.58 is function only of A demonstrating the intrinsic union between the variation of the mass
with the variation of the energy in the time, because both as already described, participate in the relativistic
force 19.06 in this relies the essential difference between the mass and the electric charge that is invariable
and indivisible in the electromagnetic theory.

From 19.57 we obtain the ray of a conical:

r= o D r= & 19.59
w 1- ecodfV1+A]  1- ecodfQ) '
Where € is the eccentricity and D the directory distance of the focus.
dw_Qsen/
Deriving 19.57 we have EZQTM 19.60

d’w_Q*codfQ)

That derived results in

19.61
dr? D
Applying in 19.54 the variables we have:
2 2 2 ?
dw odWera dW LA+ - B=zero.
df? df? df (s
Q4C052 (fQ)+2Q2C05(fQ) 1- ecos(fQ) +AQ23en2 (fQ)+(A+1) ]"LS(fQ) 2- B=zero 19.62
D’ D D D’ D '
Q'cos'rQ)  ,Qcodfq) ,Q*cos'Q), \Q° . Q%o (1), (5, HCTj(fQ) R
D e D D D
Q4c0522(fQ)+2Q2c052(fQ)_ 2Q2COS'22(fQ)+AQ—z' AQZCOf(fQ)+ (A; 2)' 2(A+1)C25(fQ)+(A+1)COZSZ (fQ)- B=zero
D [zD) D D D e D [zD) D
Q' 207 AQP+art LS UQ), 207 2a 2 codfQ) AQ" (ar)) o 19.63
D2 D & & D D? €D

In this applying in the first parenthesis Q=1+ A we have:

@- 207~ AQ +A+1)=[1+ AF- 201+ A)- AL+ A)+ A+1=(1+2A+ A~ 2- 2A- A- A+A+1)=zer0
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In 19.63 applying in the second parenthesis Q*=1+A we have:

2Q° 2A 2 _21+A) 2A 2
© @D D D

=Zero

The rest of the equation 19.63 is therefore:

AQ, (ArY)

D2 eZDZ_ B=zero

The data of the elliptic orbit of the planet Mercury is [1]:

Eccentricity of the orbit €=0,206.

Larger semi-axis = a = 5,79.10"°m.

Smaller semi-axis b=a/1- € =57910'°,/1- 0,206 =56.65816030580m.
eD=a(l- € )=579.10°(L- 0,2062)=55.44295560000m.

_al1- ¢)_57910(1- 0206°)
e 0,206

D =26914056116500m.

The orbital period of the Earth (PT) and Mercury (PM) around the Sun in seconds are:
PT=316. 10's.

PM=7,60. 10°s.
The number of turns that Mercury (m,) makes around the Sun (M,) in one century is, therefore:

.
N =100&'106=41579.
7,60. 10

Theoretical angular moment of Mercury:

2df

dt

L2=r :GMOa(l- e ):667.10' 119810% 579.1010(1- 0,206 ):7,3221293742.1030

_(6Mem,)® _(6M,)? _ (65712012 (19810%)
me’l?  ¢’L* (3p10°f (73210%)

=265108.

_(6Mem, ) _(GM, ) _ (66710 11 (19810% )

T L (73220%)

=32510 %

Q=v1+A=y1+26310°=100000001323

Applying the numeric data with several decimal numbers to the rest of the equation 19.63 we have:

AQ , (A+1) B 26510 °(100000001323)°  26510°°+1

T . - 32510%2=897610"*°
D? €°D (26914056116500) (55.44295560000)

Result that we can consider null.
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We will obtain the relativistic angular moment of the rest of the equation 19.63 in this applying the variables
we have:

AGE (D) o (GM) L (GMF . 1 | (GM) _(oMm,)

= =Zero 19.71
D? e°D? c’L’D? c’L? e’D? c’L? L*

e’L2(GM, )? 1+(i';/'|_‘;)2 +L4c? 1+% 2e’D?(GM, )*=zero

e’L2(GM, )*+€’L2(GM, )? (CZE/ILOZ)Z +L4c2+L4c2(GC';A—L°2)2- c’e’D?(GM, )’ =zero

e’L2(GM, )’ + Z(G'Z' o) +L4c?+12(GM, )’ - c*e’D?(GM, )’ =zero

2L +(1+92XGM0)2 L2 +e2w- c2e’D?(GM, )’ =zero 19.72

c

-(1+e2)(emo>2iJ[(Hez)(eMo)Z]z-4c2 O o om,

2=

2c?

e (1+e2 YoM, P +/(1+€?f (GM, )*- 4¢?(GM, )' +4c*e*D?(GM,
2c?

- (1+e?) oM, 2| /[1+2¢7 +e' | OM, )* - 467 (GM, )* +4c*e’D?(GM, )’

L2_

2c?
o (1+€7)GM, ) £/(GM, ) +267(GM, )* +&* (GM, )* - 46*(GM, )* +4c" € D?(GM, )*
- 2c?
o (1+& )M, ) £ (GM, )* +&*(GM, )* - 26*(GM,)* +4c*€*D?(GM,, )*

2c?

22 (1+e2)(GM0)2+\/(1- eZ)Z(GMO)4+4c4eZD2(GMO)2

h =7,322129273810™ 19.73

2c
This last equation has the exclusive property of relating the speed c to the denominated relativistic angular
moment that is smaller than the theoretical angular moment 19.66.

The variation of the relativistic angular moment in relation to the theoretical angular moment is very small
and given by:

30 30
EL=7,3221292738.10 7,32213(?3742.10 —. 13810 1 1974
7322129374210 72 50350900

That demonstrates the accuracy of the principle of constancy of the speed of the light.
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In reality, the equation 19.06 provides a secular retrocession perihelion of Mercury, which is given by in:
Df =2p41579 é 1 =2p41579(- 0000.000.01323)=- 346.10 °rad. 19.75

Converting for the second we have:

-5
pr == 3#4610°180003.60000__ 19.76

Jo,

This retrocession, is not expected in Newtonian theory is due to relativistic variation of mass and energy and
is shrouded in total observed precession of 5599. "
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8819 Advance of Mercury’s perihelion of 42.79”

If we write the equation for the gravitational relativity energy Er covering the terms for the kinetic energy, the
potential energy E, and the resting energy:

E., =mc’ %-1 +Ep+m)c2:£2+Ep. 19.77
-2 1- 2
c c

Being the conservative the gravitational force its energy is constant. Assuming then that in 19.77 when the
radius tends to infinite, the speed and potential energy tends to zero, resulting then:

2

Eq =t

_ 2
——=—+E,=mc 19.78
u
Vl' 2
C

Writing the equation to the Newton'’s gravitation energy Ey having the correspondent Newton'’s terms to the
19.77:

2
u k
E,= mjz - —+mc?=mc? 19.79
r
mu’ -
Where is the kinetic energy, — the potential energy and m)C2 the resting energy or better saying
r

2
the inertial energy.

From this 19.79 we have:

2 2
mu -E+m)cz=m)c2 mu”_k oo X _26Nm -, _2GM 19.80
2 r 2 r myr myr r
Deriving 19.79 we have:
2
dEy _d mu” Kk, mc’® =zero
dt dt 2 r
—m’ZUd—u+£d—r:zero
2 dt rdt
ud_u: - K d_r: - GM d_r
dt mr?dt r? dt
Ldu "M dr
dt  r? dt
du_- GZM 19.81
dr r
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Making the relativity energy 19.78 equal to the Newton'’s energy 19.79 we have:

2 2
c u- k
E; =E, M e = - —+mc? 19.82
2 P2
u
1- 2
Cc
2 2 2
c E u: G C
Ler_p:”’b _GMm, M 19.83
m1-4 M m2 mrom
2
Cc
In that denominating the relativity potential (/ ) as:
E
j =—"% 19.84
My
We have:
2 2
C +j —u- _ G +C2
1 2 2
T2
Cc
: 2 G 2
j=u . 20402, C 19.85
2 r 1- u?
CZ
In this one replacing the approximation:
1 u?
»1l+ 5 19.86
\/ u? 2c
1- 2
C
We have:
: 2 G 2
J :U__ —M+C2 - C2 1+U_2
2 r 2c
That simplified results in the Newton’s potential:
. LI2 GM 2 2 U2 = GM
/ =—F7F-—*%C -C-—=""— 19.87
2 r 2 r
Replacing 19.84 and the relativity potential 19.85 in the relativity energy 19.78:
2 2 2
¢ u- G c
ER:L+m) u_GM e 19.88

1- u2 2 r 1- u2
I c?

We have the Newton’s energy 19.79:
2
u- G
EN - m>2 _ Mm) + rn)cz
r
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Deriving the relativity potential 19.85 we have the relativity gravitational acceleration modulus exactly as in

the Newton’s theory:

qa=_9
dr
; 2 2
q=-4 _-duw GM_ . ¢
r r 2 r u?
1-C2
_-d u®* G , d c?
a=— —-—2+Cc° - — -
r 2 r dr u?
1- 2

Because the term to be derived is the Newton’'s energy

- 2 -
d U’ CM, .2 --d E =zero .

E,_u*> GM  , , . .
+C* thatis constant, resulting then in:

N _ 7

divided by m, that is

m, r
d c?
a=- d_ - >
r u
1- 2
Cc
u du
a=- - I
, - dr
u 2
1- 2
C
In this one applying 19.81 we have:
-1 G
a= 3 ';4 19.89
> -
u 2
1- 2
C

The vector acceleration is given by 19.05:

2 2
g f+2d_r£+ruf

2
a=d7
dt dt dt  dt?

dt 2
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The relativity gravitational acceleration modulus 19.89 is equal to the component of the vector radius (T )
thus we have:

_d¥ dfr* _ -1 GM
- - = T2 19.90
dt dt G2 2 r
1- 2
Cc
Being null the transversal acceleration we have:
2 ~
2d—rﬂ+r d '; f =zero 19.91
dt dt dt
dr df  d*f
———+I — =Z€ero
dt dt dt
That is equal to the derivative of the constant angular momentum L =r 2% 19.92
d. _d ,df __ drdf  ,d*f _
—_— = — = ——+r > =Z€ero 19.93
dt dt dt dt dt dt
Rewriting some equations already described we have:
1
w==—
r
dW:ﬂ—Wdr dw:%dr
i r
dw_-1dr dr _ ,dw dw _-1dr
S -5 ;o= r"—,ad-—=—F—
df r=df df df dt r°dt
dr _dfdtdr_Ldr _-L.dw dr__ dw
dt dt dfdt r?df 2 df  dt drf
dr _d dr _dfdt d dw L d dw _ - L2 d®w
=— — = —_— - - 19.94

22 L— =— — =27
dt? dt dt dt df dt df r2df df rz df?
From 19.90 we have:

3 dr df? _-GM

2c? dt? dt r?

In this one we 19.94 the speed of 19.80 and the angular momentum we have:

L. 8 6N -Ldw L " _ GM
2 r’ dr? r? r?
2
,.36M1 d'w 1 _GM
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3GM 1 d*w 3Gm1 1_GN
Y 2Tl — - —=
c” r df ccrr L

2 2
d'w_3GMdwl 1 36M1 GM _
df? c¢? df’r r c? r* L2

2
d'w_pdwl, 1 a1 B=zero

df? “dfir r r?

2 2
dWAd

17 df2w+w- AW - B=zero

2
d VZV-Ad vva AW +w- B=zero
df df

Where we have:

A-3BM L _GM
c? L2

The solution to the differential equation 19.95 is:

w=-"L[1- ecos(fQ+f,)] w=-L[1- ecos(rQ).
e eD

Where we consider f,=zero

Then the radius is given by:

D >

_iz— e —
"W 1- ecos(fQ r 1- ecos(fQ

Where € is the eccentricity and D the focus distance to the directory.

Deriving 19.97 we have —

dw Qsen(fQ) dw _ Qcos(fQ
f D Tz D

Applying the derivatives in 19.95 we have:

2
d VZV-Ad Vsz AW +w- B=zero
df df

19.95

19.96

19.97

19.98

19.99

Geos(rQ)  AQcos(Q) 1 [1 ecos (fQ) - ?32 [1- ecos(FQ)’ +dij[1- ecos (fQ)] - B=zero

D D

Q cos(fQ)_ A cos(rQ) [1- ecos(rQ)- % [1 - 2ecos (fQ)+ &? cos 2 (fQ)] + dij- diD ecos (fQ) - B=zero

D o
Qcos(fQ AGcos(fQ . AGcos(FQ) ]
5 > g ecos (FQ
A A 2(F0)+ L. L _B=
o5t 7 Zecos(fQ) 2 Dzezcos (fQ)+5D 6Decos(fQ) B=zero
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+—- B=zero

cos (7Q) F- AQ ,2A ACQ cos’(fQ Acos®*(fQ A
D e D D er
cos (7Q) F- AQ  2A 1 +Adcosz(fQ)_ Acos?(fQ) A 1 B

- + - —=zero
AD o o AD AD AeD? AdD A

cos(fQ @ ¢,2 1 +chosz(fQ) cos?(fQ) 1 , 1 B

- - —=Zero
D A eD @D A D D’ e’ AdD A

COSDZ(fQ)(Qz 1)+COS(fQ) g Q2+£_l .1 e 1 i:zero 19.100

D A @ A €0 AD

The coefficient of the squared co-cosine can be considered null because Q»1 and D’ is a very large
number:

cos Dz(fQ) (@-1)=zero 19.101

Resulting from the equation 19.100:

cos(fQ @ Q2 1 1 1 B

- - - 4+~ - —=zero 19.102
D A eD D A €0 AD A

Due to the unicity of the equation 19.102 we must have the only solution that makes it null simultaneously
the parenthesis and the rest of the equation, that is, we must have a unique solution for both the following
equations:

¢ Q¢ 2 1 1 1

—- =+—- —=zero and -—+—-E:zero 19.103
A & é& A ey’ AdD A

These equations can be written as:

1 1 1 1 2

[a=p] —- =2 —- = 19.104
A e Q@ A &
1 1 é&B

la=c] —-=—7 19.105
A & A

1 1 . :

In these ones the common term a ZK - d_D must have a single solution then we have:
1 1 2 OB

[b=c] = —=-—= =— 19.106
Q2 A eD A

With 19.96 and the theoretical momentum we have:

a=M g GM - = eDGN eDB= 6DC2; =1 19.107

c? L2 L

95/126



It is applied in 19.105 and 19.106 resulting in:

[a:c] l_i:l
A é& A
11 2 1
b: _— — — = —
[b=c] T A & A

1 -1 =-180. 10" »zero
eD 55.442.955. 600,00

From 19.109 we have Q:

112 1 4., 2A 5., 23N

QA D A D e c?

It is applied in 19.104 resulting in 19.110:

1 1 1

1 1 2 1 1
- = —__— [ — —_- —=— - —»Zero
D FA D A D &

2
O A D A

> -
N
>
>

1-

v

From 19.112 we have:

-11 30
Q=,1- M _ i 66 67. 10" J1.98. 10%) _=0,999. 999. 920. 599
eDc (55. 442. 955. 600,00)(3. 10°)

That corresponds to the advance of Mercury’s perihelion in one century of:

Df =Df. 415,79 = L-1.1.296. 000 00. 415 79 =42,79".
Q

Calculated in this way:

In one trigonometric turn we have 360" 60" 60=1. 296. 000 00" seconds.
The angle f in seconds ran by the planet in one trigonometric turn is given by:

_1.296. 00000
Q

If @Q>1 00 we have aregression. f <1. 296. 000,00 .

fQ=1.296. 00000 f

If Q<100 we have an advance. £ >1. 296. 000,00.
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The angular variation in seconds in one turn is given by:

~1.296.00000 4 596 0po00= L-1 1.296.000,00.
Q Q

Df

If Df <zero we have a regression.

If Df >zero we have an advance.

In one century we have 415,79 turns that supply a total angular variation of:

Df =Df. 41579 = L-1.1.296. 000 00. 415,79 =42,79".
Q

If Df <zero we have a regression.

If Df >zero we have an advance.

8§20 Inertia

Imagine in an infinite universe totally empty, a point O' which is the beginning of the coordinates of
the observer O'. In the cases of the observer O’ being at rest or in uniform motion the law of inertia requires
that the spherical electromagnetic waves with speed c issued by a source located at point O' is always
observed by O', regardless of time, with spherical speed ¢ and therefore the uniform motion and rest are
indistinguishable from each other remain valid in both cases the law of inertia. To the observer O’ the
equations of electromagnetic theory describe the spread just like a spherical wave. The image of an object
located in O’ will always be centered on the object itself and a beam of light emitted from O' will always
remain straight and perpendicular to the spherical waves.

Imagine another point O What will be the beginning of the coordinates of the observer which has the
same properties as described for the inertial observer O'.

Obviously two imaginary points without any form of interaction between them remain individually and
together perfectly meeting the law of inertia even though there is a uniform motion between them only
detectable due to the presence of two observers who will be considered individually in rest, setting in motion
the other referential.

The intrinsic properties of these two observers are described by the equations of relativistic
transformations.

Note: the infinite universe is one in which any point can be considered the central point of this
universe.

(8 20 electronic translation)
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§21 Advance of Mercury’s perihelion of 42.79”

Assuming UX =V

(23)UX = U);'V = V;V U X =zero
VS 2A/UX VS AWV
\/1+cz_ c? \/1+cz_ c?
ux =v U X =zero

(1.17) dt’ =dt ,/1+V—- 2"“" =dt 1/1+V—- AV Gt =t [1- V—2
C

1 2 2
(1.22) dt =dt’ \/1+V—2 ——dt +Jl dt =dt' 1+
C c? C
V2 -2
dt' =dt ey dt =dt' . |1+ —2
C C
2 12
1- ¥ 1+ =1
2\ ¢?
v=—"Y > v=-">Y >
v v
1+ 1-
C2 C2
dt >dt’ vV <V vdt =v'dt
-V -V -V
(1.33) vV = = V=
1 2 1 2 2
\/1+V2 +2V'uzx \/1+V2 +2 0 20 1+V'—2
C C C C c
(1.34) V = _V = '2" v=—-V -
VS Arux Ve v v
\/1+c2_ c? \/1+cz_ c? \/ c?
v=—V¥ > v =—Y >
v v
l+? 1- 072
r=rf=-r r'=-rf =-r = |=r

dr =drf +rd r =-dr'

fdr =drrf +rrdr =dr

\Y :d_r:J_)d rr :d_rf +r g}

dt dt dt dt

v.:dr' :d(-rf):_ dr o df;,
dt' dt' ' dt’

dr'=-drf -rdr =-dr
rdr' =-drrf-rrdr =-dr

_d_r2+rﬂ2

vZ=yy =
dt dt
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calculated with the Undulating Relativity

21.01

21.02

21.03

21.04

21.05

21.06

21.07

21.08

21.09

21.10

21.11



q=dv _d7 _d%f)_ dr

2 27
d_f f+2d_rd_f+rﬂf

dt dt?2 dt?  dt?

q=0v _d7 _d*(rf)_

-r
dt dt dt  dt?

2 2 A
d¥  df " ,dr df d7

dt' dt'2  dt'?

Vv

dt'?  dt’ dt' dt'  dt'?

tl

V2

- C2
:_L_ ,1+

1- V

_dt d Vv
dt' dt \/ V dt V2

2 vVt c?

12_-1
2 dv 14 vi222 - dy

____V_ - — -_— =

2dt 2 ¢? c? dt
dv 1 Vdvv
2
2 dt \/ v2 dtc
1- %
c

dt c? 2
1Y
c
2
g AV _ H+v 1
dt' c? 4.v?
C

dt c? > 5 T c?dt dtc?
1-V-
c
-rha:-nga: -ng dV'= IT(! _ﬁd_v d_VV_
2 3 2 2
%p@ %ﬁ%dt y2i o cfdt dic
c c o2
F=-rhd= -md _ -m dv
2 dt’
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/1__ 1___ 1, 4dv v2
\/ \/_vz dt c

21.12

21.13

21.06

21.14

21.15



2
F=_M . _V_zd_V+Vd_VV_2 (=19. 06)
v2 2 codt dtc
1- o2
_ _ ' 2
F=-md = ngazz ngzdvlz = n 3 l_v_zd_v+ d_vlz
\/1+\/2 \/1+\/2 dt vl © dtdtc
c c 2
E.= F(-dr')= Fdr = 'r—l;fdr
= = =M dv 4y vodv,advv g - -kp
E.= F. (-dr')= Fdr = 7t (-dr) 2% o Vaz r2r.dr
ard -4
C
- _ M dr' _ m v dr drv _ -k¢
E = \/ \/Zdvdt' 3 1 o2 dv +Vdvd_t 5 r—zr.dr
1+ 5 1.V 2
¢ c
2
E = ndvv __ m s 1- ¥ dvv +vdv Y = %F.dr
\/1+‘f2 viz  © ¢ '
C2 1‘C7
1 2 2
E = v av _ " 3 1-V—2vdv +vde—2 = %dr
\/1+‘f2 viz  © ¢ '
c2 1-C—
Ek_ mv' dv' = nanV 1- ﬁ_'_V_ = idr
\/1+‘f2 1 vz © ¢ '
c? T o2
_ rr;;\/dv2 _ rr(;vdv§ 'i;dr dEk:rr;;v dv2 rrgvdvg_-lgdr
\/1+v vz \/1+v vtz !
c2 1- o2 c2 1- o2

2
Ex=mc? /1+‘/—2- K —cons tan t
c2 r
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1 = ER + k 1 H:_ER A= K :GMna:GM
2 2 2 2 2 2
\/_VZ mc- mer mc mc  mc C
2
C
3
LA 1 =H+al
1'V2 r 1_L22 '
c o2
L=r v=rf” Oy d7; :rzﬁé f): 2d7g
dt dt dt dt
L=r‘v=r —X__=rf’ '12 - %fﬂ%? 1|2r2§tf(F'A1‘):r2%A
\/14\/2 1+Y ¥
C C
L=r ng =LK = constant L=r 2d/
dt dt
dEk:ng\/dv __Mmyvdv —-Kgr ==K7 gr
14V 25 r? rz’
+? 1-V
C
d_Ek:Fv— n 3Vd_:%f__r:if_v
dt 2, dt r° dt r
1- V5
C
a -k~
F=—" 7= 5.'
viz '
1-C2
2f A
F=— B _ d2r2_ df “ . drdf+rdl;f_-l2<l;
y2 2 dt dt dt dt dt r
1-C2
F.= Lt 3 dr df+rdzlr f =zero
f 25 dtdt dt?
v
1-C2
F-_ M _dT df * o _-k¢
r 3 2 r 2r
25 dt dt r
\
12
d_f:L d_r:-Ld_W d_:__de_ ﬁ:LZd_W
dt r?2 dt df dt2 r2df? dt2 r3df
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r :—2r 21.33

1 -12dWw_ 12 _-GM

2§ r2dr rs r2

V2§ df? r r? r2
1- o2
1 dw,1 _GM 21.34
y2a drf 1 |
1- o2
3
H+A1 d2";’+1 GZA 21.35
ro dff r L
H+sal dw, 1 _GM
drfs r L
HAW, gl gadWl g0 1 _CN
f drf<r rz
HIW e 3ad W4 3a07 - SN =zer0
df df L2
H:i A= K :GMYT& :GM :G_l\4 21.36
mc? mc? mc?  c? L2
HIW e 3ad W 43007 - B=zero 2137
df dr?
W:l :l[1+ecos (fQ)] d_W: - Qsen(fQ) d2\/;/: - QZCOS(fQ) 2138
r e df D drf D
2
Hm%th%[Hecos (rQ]+3A= chlc;s (fQ ;)[1+ecos(fQ)]+3A %[Hecos (fQ] -B=zero 21.39

QZHM+H +H- ecos(fQ) gim’(Q)[1+ecos(fQ)]

eZDZ +2ecos (fQ)+ €cos 2(fQ)]— B=zero

_QZH&(@J,HLWCOS (rQ)_ 3FAcos(fQ) 3FACOs Q) s (r)+
eD D eD D eD D
3A

3A
?+&—DZe’cos(fQ)+tE écos?(fQ)- B=zero
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O cosD!fQ! +H é +p4COS (rQ 3323A Ccos I:SI‘Q)_ e; Acosl;ng! N

D
2
N 3A2+6Acos (fQ)+3Acos 2(fQ)_ B=zero
e’ & D D
_HCos (fQ +4C08 (FQ)_ 3FAcos(FQ) , 6A cos (FQ) _
D D eD D e D
cos Q) , ,ac0s3(fQ) ,,, 1 . 3A
-3QA +3A +H-—+—-5—-B=zero
X D D & e’

2
_ Q2H+H_ ﬁA_l_% Ccos (fQ)+(_ ﬁA+3A)%"_Q)+HL+£_ B=zero

& D e e’

)coszng} 3Q°A 6A cos(fQ) 1 3A B
- 30A+3A + -QH+H- += +H + - —-=zero
(3[32 3ADP < & & 3AD 3AeD 3AED? 3A

(l_Qz)cosz(fQ)+ ~PH, H @, 2 cos(fQ, H , 1 _B _ero
D? 3A° 3A & & D 3AeD €D¥ 3A

Qz»]_ @- QZ)MSI’;@ =zero

SQH,H @ 2 cos(fQ, H , 1 B_,o
3A 3A & &© D 3AD & 3A

cos(fQ) _ a0 H 1 B —ero
D 3AD €D* 3A

D 3A 3A €D
ﬂ+i- g+£:zero H + 1 _ izzero
3A 3A & & 3AD €D? 3A
[a.:b] i"‘l:i i'|‘A [a:C] i+l:@
3A & QP 3A & 3A 3A
2
QZ:]_ H:_ERZZ_CZZ:I' @B:@?M:@GM:]_
mc?  me &GN
[a:b] Hy1 1H,2 1_,50 [a=c] 1.,1_1
3A. & 13A é& @& 3A & 3A
b=] L H.,2 _éB

_DGM_DGM _,
>  &GM
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—p+06A
=H+=
< eD

QZQH) The regression is a function of positive energy that governs the movement.

y=Er —Mc®_;
me? mc?

3AeD i+ H @12 _ser0
3A &
H:i A:G_M
mc? c2

- QHeD +HeD- P3A+6A =zero
- (- 3A+€D)- 3A+dD- FBA+6A=zero

QBA- QFeD+eD- PBA+3A=zero

- PeD+eéD+3A=zero

Q=1 +% Regression

e 1+ 1 B e
3AdD D¢ 3A

g=CM
=5

HeD+3A- eD(eDB)=zero

HeD=-3A+éD

3A
=1+
< D

This regression is not governed by the positive energy
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-V

V= >
h LV
1+

C2

_dv _d -V _dt’

> > > 21.50
dt dt \/1+\/ dt dt \/1+\/ V dt /1+\/

21.06

2

c
2
e R G
1+02
5 L2l
_dv _ v -1 vidv 1 JVo222 A dv
a=_"—=1-73 2 \/1 VS lvs T
dt C 14Vv° 2 dt' 2 c c” dt
C2
2
azg_v:/ : /+ oy Lyvy
t 1+\f t \/1+\/ t'c
_dv_ |, v? -1 1 v'2dv PRV | dvv’
T 1 c? ., v? v2\" c?dt c2 \/2 dt' c?
Cc c c
2 2 1
a:d_V: 1_V_2—'1 3 ]_+VI_2 d__\/divl_z
dt C V22 c” dt' dt'c
1+?
__ma _ m dv_ -m \/ dv . dv' Vv
I v el T a e
\/ _V \/ _V \/2 2 C c
2 2 1+
c c c2
F=p=_'92 __ M dv 21.51
v2 v?2 dt .
T2 1- 7%
c c
2 1
F=_ "M v dv _,dvv 21.52
\/2% cZ dt'  dt'c?
1+
c
F=na= nraa2: nazg;/:,:: -m 5 1+\/ dv. \,dvv 2153
\/ vV \/ vV V22 C dt’ dt’ C
2 2 1+
c c c2
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= = - )= m dv = - ﬁd_vl_ divl_ - = i'\
B = Fdr= F. (-dr) V2dtdr 2% l+c2 " Vldt'cz(dr) o
C
2 1 1
B= 8 avdf=_ M 1V gudl ygpdlV - Kegp
v2 dt 2 5 c dt' dt' c r
1-75 1+VI—2
c c2
2
E= 8 duw= B _ 14 gvv-vdvYY = Ky
2 , 2 T ¢? c? r
l'vz 1+Vl—2
Cc o2
2 2
E= AV o MV gvvevav Y = Ky
\/ V2 V'ZE C C r
T2 1+
c o2
- 2 42
E = mvdv _ rra\/dv3 1+v'_2_v'_2 _ %dr
2 3
\/ v 1+\LZ > ¢ ¢ r
Cc o2
_ mvdv _ Vdv' -k _mvdv _ mvdv' _-k
Eo= 1 > W= K dE, =8 2-na g= o dr
\/'V iz \/'V vzt
2 — 2 —5
Cc 2 Cc 2
2l vZ_ -me? K
B o=-mc1-—= — = _-+cons tan t
¢ 1+V- T
C2
} 2
Egr=-mc? 1- V2 K =cons tan t ER:&-K:constant
c? r V2 or
1+Y
C2
_-me® k- 2, mv? k _-me® k2
ER——z'r——'nE!C +T " ER-—'Q-'”E!C
1+\/—2 1+@2f
C C

1 _ B,k 1
2
\/1+vj me?  me’r

c
H:i A= K :GMna :GM
mc? mc? mc?  c¢?
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—1 = H+al 21.62
2

N W)

c
- ZK@'}):r 2df 21.63
dt' dt'
drp o dfy 1 adffq) 2dfg
dtr+rdtf 1V2rdtr f)rdt,k 21.63
)
C
=r 2d7 21.64
dt'
rdr 21.56
=5V
21.65
f =51 21.66
dt' dt'  dt'? r?
f =zero 21.67
21.68
d¥ _-L?dWw d?f _2'%dw
= — === 21.69
dt'?2 r? df? dt'2 3 df
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N
N (W
-
N
o
N
l\)
—
l\)

|
—
N

N
N (W
=

N W

N (W
o |Q
N

N

—

—

- Heal d?\AZ/1 -GN
rodrf r L

H+3al dw, 1 _-CM
rodf?r L

HdQ"g+H +3Ad2";’1 3Al2:' GZM
df r drfer r L

Hd2W+HW+3Ag2;NW+3AW? +(|3_—'\4=zero

dr?
Hz% A:G—';A B:%
nic c I
Hd%’;’ va+3Ad2Ww+3AV\F+B =zero
df dr?
W:l :L[1+ecos (fQ)] d_W: - Qsen(fQ) ) = dCOS(fQ)
r e df D df D

2
H- chgs rQ +H$[l+ ecos (fQ] +3A° chgs (r9 ;D[1+ ecos (fQ]+3A é[“ ecos(fQ] +B=zero

f f
- QZH%(Q+H%+H%E'COS (rQ)- %%(g[l+ecos (rQl+ ;gz b‘“zecos (fQ)+ € cos 2(/*’Q)]+B:zero

O cos!fQ} +H é +4C0Ss éfQ)_ :{é);A cos D(fQ)_ :{é);A cos D(fQ) ecos (FQ)+

3A 3A
Zecos Q +
eD? ( )

2D2 62 cos 4(fQ+B=zero
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) QZHCOSVQ!J,HLJ,HCOS("Q)_ 3YAcos(fQ) ﬁAMf_Q)Jr
D =D D e D D’

2
+ 3A2_|_6ACOS(fQ).,.?,ACOS 2(’CQ)+B=zer0
e’ & D D

_HCos (FQ) , ycos(fQ)_ 3FAcos(FQ) , 6Acos (FQ)
D D (=D D e D

2 2
_ ﬁACOS 2(fQ) +3ACOS (fQ)+Hl+ 3A +B=zero
D

D? & €t

2
G+ XFA L 6A cos(FQ) ( A+3A)J—)C°S fQinl +3A 1B=zero
q & & D (ﬁ D @ e

2
(—:{DZA+3A)%.};_Q2+ _Q2H+H_m+% COS(fQ)+H 1 + 3A +£:ZGI'O

@ & 3AD 3AD 3AED’ 3A

(1_(-92)0052(1‘(3)+ -QPH,H P, 2cos(fQ), H , 1 . B

+—==zero 21.75
D? 3A 3A & & D 3AD €D¥ 3A
2
Orl - QZ)M}@ =zero 21.76
-QH,H &, 2 cos(fQ, H , 1 +B =zero 21.77
3A 3A & & D 30D €D¥ 3A

J_)COS Q =zero H +—1 2+§=zero
D 3AD D% 3A

cos (fQ), ser0 - QH,H _ i+£:zero
D 3A €D

3A &
ﬂ+i- g+A=zer0 L+ 12+£:zero 21.78
3A 3A & & 3AD €07 3A
[a_:b] i-}l:l ﬂ+l [a:c] i-{-l:_ QB 21.79
3A & T 3A D 3A & 3A
2
QZ:]_ H:%:%:-l d)B:dD(iM:dDGM:]_
mc®  mc L OGN
[a:b] ﬂ+i:l ﬂ+£ i:zero [a:c] i+l:-l l:zero
3A. & 13A & [zD) 3A. & 3A &
b=] L H.,2 - &8 21.80
F3A & 3A
@B:@GM:@GM:]. 21.81
L2 eOGM
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[b=c] é BﬂAJr% :-i QZ:-H-% 21.82

QZCXH) The advance is a function of negative energy that governs the movement

_ Eg _-mc?_ _ 6A ~p_q1 BA
H—w—w—‘l @—‘(‘ 1)'5 (22—1'5 Advance 21.83
=p] “i+1-1 -1,2 " 1_,09 21.84

3\ D . 6A 3A D D
eD
H =—ER2 :G—ZA B:%
mc C L2

ﬂ+i- g+£ =zero L+L+£:ZGI’O 21.78

3A 3A & & 3AeD €D 3A
3aeDp -~ H H F 2 0 spe? - H 4+ 1 LB — 09

3A° 3A & & 3AD €D¥ 3A
- PHED+HeD- @3A+6A=zero HeD +3A+eD(eDB)=zero 21.85
epp=DCN _DCN _, HeD=-3A- D 21.86
2 eGN

- (- 3A- &D)- 3A- - F3A+6A=zero 21.87
QBA+QeD- - Q3A+3A=zero
QD- eD+3A=zero Q=1- % 21.88
This advance is not governed by negative energy
- QPHeD+HeD- P3A+6A=zero 21.85
- (- 3A- &D)+HeD- F3A+6A=zero 21.89
QBA+QD+HeD- P3A+6A=zero
QD+HeD+6A=zero Q=-H- % 21.90

~QH,H @, 2 cos (fQ)+ H 1 4B —zer0 21.77

3A 3A e & D 3AeD €% 3A

3AD? ﬂ+i_ Q+A COS(fQ)+ H + 1 +£ =zero
3A 3A & é D 3AD €% 3A

oD - PHIAED , HBAD - (FBAED , 2. 3AeD €05 (FQ) | H3ASD? | 3AED?  BRASD?
3A 3A ES) D D 3MeD D
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eD(- PHED+HeD- Q23A+6A)%@+H6D+3A+ eD(eDB)=zero

2
=6 _OCN _,; H=SR —2MC"_ 4

L2 &GN mc?  mc?

eD(- PHeD +HeD- Q?3A+6A)%@- eD+3A+eD=zero
(- PHeD+HeD- Q23A+6A)J_2°05Df Q +%:zero

_1.3A

=1-2A
L%

- 1-3A HeD+HeD- 1- 38 3a4pa COSIQ A0
D D D &

- HeD+HeD3A +HeD- 3A+3a3A +6p C0S(Q),3A oy
e e D

- HeD+H3A +HeD- 3A+9T:‘52+6A J—)COSD’C Q +38 =zer0

2
A+ QA2 L op COS(FQ) 3A 00
D D &

2
_3A+ 92 op COS(FQ) 3A 00
D D @

9A? cos (fQ) +3A —zer0 cos (fQ) +1 =zero
e D (=D D 3A

(- PHeD+HeD- Q23A+6A)%@ +%‘:zero

—q1_6A
=1-9A
< e

- 1-A epaHeD- 1- 68 3a4pa COSIQL3A_ o
) ) D &

- HeD+HeDBA +HeD - 3A+3A8A +gp S Q) 3A 0y
e e D

- HeD+HBA+HeD- 3A+ 1822 1ga COS(FQ)  3A _, o 0
) D @
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2
HEA+18A2 L op COS(FQ) 3A 00
D D

2
_GA+18A2 op COS(Q)  3A 00
D D

1 _gp.188° cos(fQ) 3A _ 0,
3A eD D eD

_1+6A cos VQ!+i:zero
e D eD

- 1-64 cos (fQ) +-L =zero
e D eD

(- PHeD+HeD- Q23A+6A)%@ +%‘:zero

_ 2
szl H:i:ﬁ:_ 1
(eD- eD- 3A+6A)%@+%:zero

@A)J—)COSD'C Q +%:zero

@=1-2 Q=1

- sz+$ =7Zero

D

cos(fQ) +1 =zer0
D eD

@=1-A

e e
‘- sz+i| <<M+% <<<<<<}J—HOS Q +l|
D eD D (=D D 3A
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Energy Newtonian (Ey)

2
u
S

2 2 2
2_ dr ", 47 roLL

[
1

=zero
dt rZ mr m

Q:L d_r:-Ld_W d_:__de_ ﬁ:gd_w
dt r? dt drf dt? r2df? dt2 r3df

2

2
Ldw 12 21 2En o

df  rZ2 mr m

2

dw 1 _ 2K 1_ _ZEN =zero

df  r? ml?r mlL?

2
daw .1 2k 1 2B _

= =zero
df  r? ml%r mL?
’ 2E
aw 2. Zkzw- N =zero
df mL® mL
2E
X = 2k2 y = N2
mL mL
2
AW w2 - xw- y =zero
df
w=L="1 4 acos (O] dw _ - Qsen(7Q) daw _ - Geos(fQ)
r e df D d 72 D

2 2
-QSJ_)EN‘Q + plivecos(rQ] - x-fi+ecos(Q]- y =zero

1 1 1 _
%[1 cos 2(fQ)]+E[1+Zecos (FQ+cos(fQ)- X5 X5 €c0s (fQ)- y =zero
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. Qcosz(fQ)+L 1 2ecos (fQ)+—e2cos 2fQ- X M- y =zero

en? e D D

Q_Q?cosz(fQ)+ 1, 2cos(fQ, cos?(fQ x M y =zero
D? D? e @ D D? D) D
cos?(fQ)_ cos¥fQ), 2 cos(fQ ,cos(fQ, @, 1 _ x

S e e - b Al
L- QZ)—(—)COSZfQ COS fQ +%+$-§B- y =zero

2

QP »l (1- Qz)%z(f@:zero
%-x COSéfQ)+é+ele2 é y =zero
%-x =zero éﬂs%z 2y =zero
x =2 =%

mL2 mL?
A-X Zero X:A:A i:GMn& LZ:QDGM
) D mZ & m
e’ | e DX
=~ 92D2 o - eD?y =zero
€ +1- éDx- eD?y =zero
Dx=eD-Z  x=2 ey =g —gpp En =205,

eD 2 medDGN K

E+1-2- ZQEEN =zero Ex :%(e?- 1)
1_14. -k
. 6D(1 &) Ev=
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§22 Spatial deformation

'[:L2 t >t'
t=t,+t,=—L 4+ L -2 1 pr=2
cC-v Cc+v ¢ 1_vj c
c
Z_' 2
t=4 1 -_¢c -1 p-Yy L>L
C 1_\#2 \/1\c/2 C

This is the spatial deformation.

The length L' at rest in the reference frame of the observer O' is greater than the length L that is moving with
velocity relative v on reference frame the observer O.

Now compute to the observer O' the distance d =vt' between O« O:
d=vt'=v&
Cc
2

Thus we obtain the velocity v: d =V Y \Y; =%LL' .

Now compute to the observer O the distance d =vt between O« O:

d=vt =vf, +t,)=v %—1

1
2
Thus we obtain the velocity v: d =V L% v=cd 1. V—2
C 1.V A C
C2

The speed v is the same to both observers so we have:

:&:& 1_ 2
Vi Ta

o, |<

2
Where applying the relation L =L [1- \é—z we obtain:

cd - cd 1-V2  g=d.h-Vv2 d >d
[ 2 2 .
A Z_'\/l- vooe ¢

Where the distance d and d’ varies inversely with the distances L and L.
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In general, we obtain (14.2, 14.4):

d 1- VUX
d=—cz or
1-V-
c
d 1+ﬂg—))
U X =zero d= 02
1-
d 1+¥C
ux =c d= 02
1-‘é2
q 14V -2v
Ux =-v d= c
2
1- &

ux =v d=——=—
- o2

d1-Y¢
Ux =c d :—CZ
Ve
d1-v0

ux =zero d= Cz

1_V

C2

(8 22 electronic translation)

d 1+Vu')<
d= c”
2
e
d=—d
2
e

d =d 1-\é—§
d =d 1-\é—j
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§23 Space and Time Bend

Variables with linet ',V X'y 'r ' etc... They are used in §21.

Geometry of space and time in the plan Xy ® y * X .

y =f (x)
x =ct’ y=ds=d " d°
ds =f (ct')
dx =cdt' dy =ds =+d . d"
r=xi +yj =ct'i + dsj X'y
dr =dxi +dyj =cdt'i +d< | d'=dxi+dy ]
dr =F-dr X4y +Y gy
ror r
_dr _dx: , dys _cdt's dSc 7, % c_d ' _dXs,dy s
VZar Tar Tar?) Tar ! Tar TV V' Tar Tar ! Tar !
d_X: d_y:d_S ' — i = i
dt C dt dt v C=VCos] V =vsen |
dy ds )
tgj:d_y:dt' _dt' _1ds dy_d dy _1d 1ds _1 d3"
dx gfx c cdt dx? dx dx cdt' cdt' c?dt'?
tl
v=Ccv' c=ci \% :\/]
:dv :dc o' d_C: d_V:@_. !
A dr dr dr 2" a dr 2@

ds?=dr.dr =(dxi +dy] Jlaxi +dy]j )=(cdt' T +ds ] Jedt' | +ds | )=dx?+dy 2=c?dt 2+ds 2
ds =+cdt' ?+ds ? ds =+ds?-cdt' ?

_ds - |pz, d8 T gz _ds _[ds * 2_ f7ior
% prve C +dt' cC°¥'“>C v at qt c V°-C
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K :‘di ®j°b theoretical curve
ds

d d d ay L&
. _dy - dy dy _ dx®* _  c?dt'?
9j =g, j =arctg o 0L dy 7 1el ds
dx c? dt'
ds _
dx
1d$"
c’dt' ?
: dj 1+1 ds i 1ds
k=dl _dx_ "~ c*d’ _  c’dt?
s ds 2 3
== 1 ds 2 2
dx \/1+ 1 1+L di
C2 dt C2 dtl
_ . 1ds d$" 1 dv.
ds _ds di g9l _ c’dtdt'® _c® dt
. . 3 3
dt dt' ds ds 2 5 v2 5
c? dt’ c?
A 1ldv
VvV K= dL:C dt’ K:d_J_ Czdt
d 2 ds
1"‘% 2 1+L22 2
c c
dE, = ngvdvz - v dv = :-der :szal ' 21.56
1-V2 1+72§ r r
c 2
N A
di:ll'v _mgy dt’ :L’fdl :L’fv'
dt' ' , 3?2 dtt r?
12 2
14\1072
dg, . . _ A K
dt' =mcy ds _r2N
—mc2d — k- _d - k1
FEMe s Tr e ds rrgczr2r

(8 23 electronic translation)
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§24 Variational Principle

2
m,C
By == =%+con$ant 21.21
\
1- .
2 2
m,v 2 m.cC
E, = +myc? [1- ¥ =—Too_=K,icongant
V2 CZ V2 r
1' 7 1_ 7
Cc Cc
2
meV 2 2 m.v
o - -myc? 1—V—2+K =m,c? p=" - m_? /1V_2 —_Mg
1- Lz C r dv C 1- Lz
c? 2
2
L=- mocz‘/l- V—2+K Lagrangeana.
Cc r
m0v2 2 . - .
=" L =m,c* What is the initial energy of the particle of mass mo.
_Vv
1 2
2

Variational Principle
t2

Acdo=S= L[x(t),x(t),t]dt

t

x:d—X:ux This is the velocity component in x axis.

dt

t2
dS=d L(xxt)dt=zero variation of the action along the x axis.

t1
Building the variable X'=X+€h in the range t;£t£t, we have seen this when €® zero X'=X and
where €l zerowe will have the conditions:

de_ — _ _ _ _dn
ozero h=h(t) h(t:)=zero h(t,)=zero Go 2610 aqt
" — dx _ dx'— dx_ dx —
X'=x+eh X'=x+eh 4o h 46 h do 2" 4o 2610

t, t,
Then we have a new function I(e): G(x+eh,x+eh,t)dt: F(X',X',t)dt and where:
t, t,

t, t,

e=zera® X'=x® xX'=x® F=L

el zera® X1 x® X1 x® FL L

F(x',x',t)dt: L(x,x,t)dt

t t

t2 t2
F(x',x',t)dt1 L(x,x,t)dt

t t
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t
So we have I(e): F[x'(e),x'(e),t]dt that provides derived:
tl

t t t t
di(e)_“TF(x' X\ t)dx 4., TF(XXt)dx' o " F IE

tl 1 1 1

d IFy -d IF . IF9h qF_d IF, o d IF
dt X’ dt fx’ x'dt 9qx" dt X dt X’

t t t t
d(e)_"IFy g TFrgie g d IFp o d IF 1 gie
o —t 'ﬂx'hdHt ﬂX,hdt—t ﬂx'hdHt o ﬂx'h dt Tx h dt=zero

1 1 1

t, t, t
die)_ J]Ehdt+ d IFy . d IF hgi=zero

de 1 ix dt qx'
tl tl t1
t, t
IEn =TB 7 =IER(c)- JER(t)=
td ﬂx,h ﬂX'htl ﬂX,h(tz) ﬂx,h(tl) zero

1
t2

t t
d(e)_"F, g d IF pore TE.d IF e
e —t ﬂX,hdt tdt o hdt—t T dt hdt=zero

t
dle)_" F.d F pg=  yera JE. d IF _
o —t D¢ dt 1 hdt=zero h?* zera® D¢ dt =zero

e=zerad® X'=x® xX'=x® F=L fL.d L =zero

x dt qx
L-d L s i = m.c? |1 V24K
X _dt Tx This is the x axis component L=-m.c*,/1 2y
I mezi-viik od T 2 1o V24K
T myc~, /1 Cz+r dt X myc-, (1 C2+r

2 2 2

1. 2 ]1.v2 _ 1 k- :\/d_)(+$’+d_2: 2 4y2+72
X m,c-, (1 o, zero o™ r zero \Y at Tat Tat N XEHY2+Z
% % 2% %])Z - m002 1-\(;—2 This is the x axis component
J]_ I_( :kj]_ r-1)=k(-1)rt? r—. klﬁ:_ kL 2—y24\2452
ﬂX r ﬂX( ) ( ) ﬂX I’Zr r3 r X +y tz
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ix

Lo mcz\/r_
j‘ mcz\/l.i_2

11
-mocz% 1-V_22 27 2vdv _ MV ¢
b
m,v

X mox

v22

d _MX
dt \/17
02

= JPTQE_ xd v2
1Y, @

\/1'\/5 Feryrez

C

\/1-72 11V

=
C2

[
i

27 2vdv
2 -
1 V c? dt
m,x
g Z:mo o [V, v o m, FF
\/E v c2 Vz c2dt L V2 v Vzdv
v 2
c? \/; v c? dt
d MyX 1- V2 1. v?
Et [0] o C2 C2 Vd m
_V2 v _ M, v
E F S Ew T e avad
C2
'ki’l\: mO V2 d N
3 1- V2 x4+yOV X .
AT e e e
Y
ys_ m
—kFJ (o] 3 1 ?j\t/y ~
_v2 2
1 <
zZi m
- —k: (o] V d
3 1 z+yavVZ .
SR ; Ydtc? k z axis
Y
-k—- y=
i- k= 3] k-5 k_rk(XI+yJ+Zk) —kl’:—kf
r3 r2
mo 2
1—V— X+VdVX N m
5 2 e Mo v L,dvy s, M
c 2
vé 2 dtc V2 37 ¢? YV ez jor—o 1V Saydvz fo-ke
¢ " o2 _vZ 2 c? dtc? r2
¢ 2
c
mo 2
1'V_ X+ QL'A V
3 2 XV i+ 1- LAY 3, v
c
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2 ~ ~ 2 A A
0 g A RyTe L2 & JPRRE R Ay Ry VA0 AP O Vi zk+vdVXk == k¢
V2 3 c? dtc? V) dtc2J 2 dtcz  r?
2
M, V2 (o Gk e VOV ik ) == ke
1- = Xi+yj+zk ==X ++yj+2ZK ) ==
1 i i) =
2
a=xi+yj+zk= 3( |+yj+zk) ‘(jj\; V=X ++yj+ZK
__m 2 dv,,dvv _-k-
F= e - 2T == =21.16
V2 3 c2 dt'dtcz 12
1- &
. m 2 dv,,dvv _-k;
F=—o . 1.V OV, ==XF =21.19
V2 3 c2 dt dtc?z r?
"2
§ 24 electronic translation
§24 Variational Principle continuacion
) 2
Ex =mec® [1+Y- = M€ _K,congante 21.21
C Vv r
1 v
C2
_ l2 OC
E, =m.c? 1+ \/7 +myc? [1- L = —= +c0nstante
.2
Ek-K:mocz /1+_-K +moC /1 V k__mc k-k_Kcongante
r } rr
2 2
E, - K=m,? [1+ V- k= MV 2 f1- V—2+K m,c? = constante
r C r 1 Vv C r
)
C
2 VI2 2 V2 k moV2
T'=myc?, 1+ T=-mec?,[1- L E,=- % pv=—
C C r / 2
1- \"
2
C
m,Vv m_v 2 2
pv= v ©—=vp. p=p, [+ p=p,/1- ¥
\/1- \/1+V ¢ c
c? c?
Er =E, +E, =T'+E, =pv- (T- E,)
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Ex=T Ex=pv-T T=pv-T T=pv-T
L'=T'+E, L=T-E,
Er =Ex+E,=L'=pv- L
L'=pv-L L=p'v'- L' L+L'=pv=p'v
'—ﬂ:i 2 V_Iz = mOV' = :ﬂ:i - 2 -V_Z = mOV =
p'= v av moC ‘/1+ 2 ¥ MgV p & dv moC”,[1 2 > mgV
1+ 1- %
C2
dr'=dxi+dy'j+dzk=- dxi - dyj- d&k=- dr 21.08
V':i:Mi\+d_y:’:+d_Z:|2: -1 d_)(?+d_)/]+d_ZR - -1 dr__-v
dt dt dt" dt y2 dt dt’ dt y2 dt V2
o s 3
g —dX'— -1 dx— " Vx _ -X
X'=v', === = =
o dt _y2dt LV2 w2
c? c? c?
' —L:i 2 v :—mox =- :ﬂ:i - 2 V—2 = MoX =-
Px= e e MC 1}1+ 2 ¥ MgX = T - MeC ,/1 2 v MoX
1+-Y5- 1- V-
C2 C
r':x'iA+y']+z'lA<:- Xi - y] zk=-r 21.07
X'=- X y'=-y z7=-z
M:_ 1 M:_ l j]z:_ 1
ix Ty 1z
L. d L 2ger
x dt fx
L d L _IxL_dtd 1L - —gv L LMoy =
X dt X I dtdt X o L=pv-L ) g e M

XM _dtd IL - T(py-y)-_1 d V=
Ix qx' dtdt' qx ‘ﬂx'(pv L) 2 dt'( mox) Zero

1+
I FPIR) VLU S | S Vi ISR
P L ™ Ve P o de 2o
1+ Y
ﬂ—p::zero IV —zero L'=m,c?, /1+V—'2- k
ix fix c?
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Iy Mo dX'—zerg r2=rur=(-r).(- r)=x?+y?+z22=x>+y* +7°
ﬂX 1+v'2 dt
C2

> qx C ™ r X'

1 m 1 '
1+VY 1V
c? c?

m_x' ' (PN 'a A A oA ~
ot = kX -k%l-k%j-k% :—E(x'|+y'1+z'k):
v'2 r r r r r

1+ 5
C

myx' : m,y' ]+ m,z' mea _ -k

2
V' v'2 v v2or
\/1*02 \/1+c2 \/1+02 \/1 2

ma _k. " o -m.a _ka
0 :_kr':Lr -r'=r 9 :—kr

1+ 1+
C C

124/126

ir':if'

3 r?

=21.19



8§25 Logarithmic Spiral

2 2
Hd—V2\I+HW+3Ad—V2VW+3AW2- B=zero r= eaf
df d
- 2 _ N2
w=1=11+ecodf Q)] dw _ - Qser{f Q) dw Q?codf Q)
r eb df D of D
2
w=l=—=e aw - _ae @ dW = 2 o
re df of

Ha’e @ +He ¥ +3aa’e ¥ e ¥ +3A(e @ - B=zero
Ha’e ¥ +He ¥ +3Aa’e # +3Ae’ # - B=zero
(1+a2)He @ +(1+a%3Ae # - B=zero
(1+a2)3ae 2 +(1+a2)He @ - B=zero

(1+a2)3Aw? +(1+82 )Hw- B=zero

3AW2 + Hw - —B = zero

W:eaf :1-: =
r 23A 6A ~ 6A 1+a2
2
3a=H4+ 1 2, 12AB 4y -H, 1 2, 12AB B_.=zero
6A ~ 6A 1+22 6A ~ 6A 1+a?) (1+a?
2 2
an -H 4p-H 1 [j2,12AB , 1 [j2,12AB ~ _
6A 6A 6A 1+a’) 6A 1+a’
2
“H%y H 424 12AB 0 B —zerg
6A  6A (1+a?) (1+a%)

SH%.5-H 1 [2,12AB . 1 ,2,12AB _
e e 6A\/H +(1+a2)+36A2 i +(1+a2)
-H?, H [42,12AB . B _
6A TEAY | rad) [rad) O

H> , -H [42,12AB , 1 .2, 12AB

3A * H + + H +
36A2 7 18A%\  (1+a®) 36A% (1+2?)
2

SH2,H [g2+12AB . B —jerg

6A ~ 6A (1+a?) (1+a?)
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2 12AB
H 2

H?* ,-H [42,12AB . 1
1A 6AY | ra?) 1

2
“HZLH [z, 12AB 52 — er0
6A  6A (L+a?) (1+a2)

H*, 1 2,12AB _H?’. B
12A 12A +a?) 6A [1+a?)

=Zzero

H>,H?, B _H> B
124 12A (1+a?) 6A (1+a?)

=zero

"Although nobody can return behind and perform a ne w beginning,
any one can begin now and create a new end"
(Chico Xavier)
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e-mail: avaliac@sjc.sp.gov.br
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