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The so-called ‘Schwarzschild solution’ is not Schwarzschild’s solution, but a corrup-
tion, due to David Hilbert (December 1916), of the Schwarzschild/Droste solution,
wherein m is allegedly the mass of the source of a gravitational field and the quan-
tity r is alleged to be able to go down to zero (although no proof of this claim has
ever been advanced), so that there are two alleged ‘singularities’, one at r = 2m and
another at r = 0. It is routinely asserted that r = 2m is a ‘coordinate’ or ‘removable’
singularity which denotes the so-called ‘Schwarzschild radius’ (event horizon) and that
the ‘physical’ singularity is at r = 0. The quantity r in the so-called ‘Schwarzschild
solution’ has never been rightly identified by the physicists, who, although proposing
many and varied concepts for what r therein denotes, effectively treat it as a radial
distance from the claimed source of the gravitational field at the origin of coordi-
nates. The consequence of this is that the intrinsic geometry of the metric manifold
has been violated. It is easily proven that the said quantity r is in fact the inverse
square root of the Gaussian curvature of a spherically symmetric geodesic surface in
the spatial section of the ‘Schwarzschild solution’ and so does not in itself define any
distance whatsoever in that manifold. With the correct identification of the asso-
ciated Gaussian curvature it is also easily proven that there is only one singularity
associated with all Schwarzschild metrics, of which there is an infinite number that
are equivalent. Thus, the standard removal of the singularity at r = 2m is, in a very
real sense, removal of the wrong singularity, very simply demonstrated herein. This
has major implications for the localisation of gravitational energy i.e. gravitational
waves.

I. Schwarzschild spacetime

It is reported almost invariably in the literature that Schwarzschild’s solution for Ric =Rµν =0 is (using c=1,
G =1),

ds2 =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (1)

wherein it is asserted by inspection that r can go down to zero in some way, producing an infinitely dense point-
mass singularity there, with an event horizon at the ‘Schwarzschild radius’ at r =2m: a black hole. Contrast this
metric with that actually obtained by K. Schwarzschild in 1915 (published January 1916),

ds2 =
(
1− α

R

)
dt2 −

(
1− α

R

)−1

dR2 −R2
(
dθ2 + sin2 θdϕ2

)
, (2)

R = R(r) =
(
r3 + α3

) 1
3 , 0 < r < ∞,

wherein α is an undetermined constant. There is only one singularity in Schwarzschild’s solution, at r =0, to which
his solution is constructed. Contrary to the usual claims made by the astrophysical scientists, Schwarzschild did
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not set α =2m where m is mass; he did not breathe a single word about the bizarre object that is called a black
hole; he did not allege the so-called ‘Schwarzschild radius’; he did not claim that there is an ‘event horizon’ (by any
other name); and his solution clearly forbids the black hole because when Schwarzschild’s r =0, his R =α, and so
there is no possibility for his R to be less than α, let alone take the value R =0. All this can be easily verified by
simply reading Schwarzschild’s original paper [1], in which he constructs his solution so that the singularity occurs
at the “origin” of coordinates. Thus, eq. (1) for 0 < r < 2m is inconsistent with Schwarzschild’s true solution,
eq. (2). It is also inconsistent with the intrinsic geometry of the line-element, whereas eq. (2) is geometrically
consistent, as demonstrated herein. Thus, eq. (1) is meaningless for 0 ≤ r < 2m.

In the usual interpretation of Hilbert’s [2, 3, 4] version, eq. (1), of Schwarzschild’s solution, the quantity r therein
has never been properly identified. It has been variously and vaguely called a “distance” [5, 6], “the radius” [6–
19], the “radius of a 2-sphere” [20], the “coordinate radius”[21], the “radial coordinate” [22–25], the “radial space
coordinate” [26], the “areal radius” [21, 24, 27, 28], the “reduced circumference” [25], and even “a gauge choice: it
defines the coordinate r” [29]. In the particular case of r =2m =2GM/c2 it is almost invariably referred to as the
“Schwarzschild radius” or the “gravitational radius”. However, none of these various and vague concepts of what
r is are correct because the irrefutable geometrical fact is that r, in the spatial section of Hilbert’s version of the
Schwarzschild/Droste line-element, is the inverse square root of the Gaussian curvature of a spherically symmetric
geodesic surface in the spatial section [30, 31, 32], and as such it does not of itself determine the geodesic radial
distance from the centre of spherical symmetry located at an arbitrary point in the related pseudo-Riemannian
metric manifold. It does not of itself determine any distance at all in the spherically symmetric metric manifold. It
is the radius of Gaussian curvature merely by virtue of its formal geometric relationship to the Gaussian curvature.
It must also be emphasized that a geometry is completely determined by the form of its line-element [33].

Since r in eq. (1) can be replaced by any analytic function Rc(r) [4, 30, 32, 34] without disturbing spherical
symmetry and without violation of the field equations Rµν =0, which is very easily verified, satisfaction of the
field equations is a necessary but insufficient condition for a solution for Einstein’s static vacuum ‘gravitational’
field. Moreover, the admissible form of Rc(r) must be determined in such a way that an infinite number of
equivalent metrics is generated thereby [32, 34]. In addition, the identification of the centre of spherical symmetry,
origin of coordinates and the properties of points must also be clarified in relation to the non-Euclidean geometry
of Einstein’s gravitational field. In relation to eq. (1) it has been routinely presumed that geometric points in
the spatial section (which is non-Euclidean) must have the very same properties of points in the spatial section
(Euclidean) of Minkowski spacetime. However, it is easily proven that the non-Euclidean geometric points in the
spatial section of Schwarzschild spacetime do not possess the same characteristics of the Euclidean geometric points
in the spatial section of Minkowski spacetime [32, 35]. This should not be surprising, since the indefinite metric
of Einstein’s Theory of Relativity admits of other geometrical oddities, such as null vectors, i.e. non-zero vectors
that have zero magnitude and which are orthogonal to themselves [36].

II. 3-dimensional spherically symmetric metric manifolds

Recall that the squared differential element of arc of a curve in a surface is given by the first fundamental
quadratic form for a surface,

ds2 = E du2 + 2F du dv + G dv2,

wherein u and v are curvilinear coordinates. If either u or v is constant the resulting line-elements are called
parametric curves in the surface. The differential element of surface area is given by,

dA =
∣∣∣√EG− F 2 du dv

∣∣∣ .

An expression which depends only on E, F , G and their first and second derivatives is called a bending invariant.
It is an intrinsic (or absolute) property of a surface. The Gaussian (or Total) curvature of a surface is an important
intrinsic property of a surface.

The ‘Theorema Egregium’ of Gauss

The Gaussian curvature K at any point P of a surface depends only on the values at P of the coefficients
in the First Fundamental Form and their first and second derivatives. [37, 38, 39]

And so,
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“The Gaussian curvature of a surface is a bending invariant.” [38]

The plane has a constant Gaussian curvature of K = 0. “A surface of positive constant Gaussian curvature is
called a spherical surface.” [39]

Now a line-element, or squared differential element of arc-length, in spherical coordinates, for 3-dimensional
Euclidean space is,

ds2 = dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3)

0 ≤ r < ∞.

The scalar r can be construed, verified by calculation, as the magnitude of the radius vector ~r from the origin
of the coordinate system, the said origin coincident with the centre of the associated sphere. All the components
of the metric tensor are well-defined and related geometrical quantities are fixed by the form of the line-element.
Indeed, the radius Rp of the associated sphere (θ = const., ϕ= const.) is given by,

Rp =
∫ r

0

dr = r,

the length of the geodesic Cp (a parametric curve; r = const., θ =π/2) in an associated surface is given by,

Cp = r

∫ 2π

0

dϕ = 2πr,

the area Ap of an associated spherically symmetric surface (r = const.) is,

Ap = r2

∫ π

0

sin θdθ

∫ 2π

0

dϕ = 4πr2,

and the volume Vp of the sphere is,

Vp =
∫ r

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ =
4
3
πr3.

Now the point at the centre of spherical symmetry for any problem at hand need not be coincident with the
origin of the coordinate system. For example, the equation of a sphere of radius ρ centered at the point C located
at the extremity of the fixed vector ~ro in Euclidean 3-space, is given by

(~r − ~ro) · (~r − ~ro) = ρ2.

If ~r and ~ro are collinear, the vector notation can be dropped, and this expression becomes,

|r − ro| = ρ,

where r = |~r| and ro = |~ro|, and the common direction of ~r and ~ro becomes entirely immaterial. This scalar
expression for a shift of the centre of spherical symmetry away from the origin of the coordinate system plays a
significant rôle in the equivalent line-elements for Schwarzschild spacetime.

Consider now the generalisation of eq. (3) to a spherically symmetric metric manifold, by the line-element,

ds2 = dR2
p + R2

c

(
dθ2 + sin2 θdϕ2

)
= Ψ(Rc) dR2

c + R2
c

(
dθ2 + sin2 θdϕ2

)
, (4)

Rc = Rc(r)

Rc(0) ≤ Rc(r) < ∞,

where both Ψ(Rc) and Rc(r) are a priori unknown analytic functions. Since neither Ψ(Rc) nor Rc(r) are known,
eq. (4) may or may not be well-defined at Rc(0): one cannot know until Ψ(Rc) and Rc(r) are somehow specified.
With this proviso, there is a one-to-one point-wise correspondence between the manifolds described by metrics
(3) and (4), i.e. a mapping between the auxiliary Euclidean manifold described by metric (3) and the generalised
non-Euclidean manifold described by metric (4), as the differential geometers have explained [30]. If Rc is constant,
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metric (4) reduces to a 2-dimensional spherically symmetric geodesic surface described by the first fundamental
quadratic form,

ds2 = R2
c

(
dθ2 + sin2 θdϕ2

)
. (5)

If r is constant, eq. (3) reduces to the 2-dimensional spherically symmetric surface described by the first fundamental
quadratic form,

ds2 = r2
(
dθ2 + sin2 θdϕ2

)
. (6)

Although Rc and r are constants in equations (5) and (6) respectively, they share a definite geometric identity in
their respective surfaces: but it is not that of being a radial quantity, or of a distance.

A surface is a manifold in its own right. It need not be considered in relation to an embedding space. Therefore,
quantities appearing in its line-element must be identified in relation to the surface, not to any embedding space
it might be in:

“And in any case, if the metric form of a surface is known for a certain system of intrinsic coordinates,
then all the results concerning the intrinsic geometry of this surface can be obtained without appealing
to the embedding space.” [40]

Note that eqs. (3) and (4) have the same metrical form and that eqs. (5) and (6) have the same metrical form.
Metrics of the same form share the same fundamental relations between the components of their respective metric
tensors. For example, consider eq. (4) in relation to eq. (3). For eq. (4), the radial geodesic distance (i.e. the
proper radius) from the point at the centre of spherical symmetry (θ = const., ϕ= const.) is,

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
Ψ(Rc(r))dRc(r) =

∫ r

0

√
Ψ(Rc(r))

dRc(r)
dr

dr,

the length of the geodesic Cp (a parametric curve; Rc(r) = const., θ =π/2 ) in an associated surface is given by,

Cp = Rc(r)
∫ 2π

0

dϕ =2πRc(r),

the area Ap of an associated spherically symmetric geodesic surface (Rc(r))= const.) is,

Ap = R2
c(r)

∫ π

0

sin θdθ

∫ 2π

0

dϕ = 4πR2
c(r),

and the volume Vp of the geodesic sphere is,

Vp =
∫ Rp

0

R2
c (r) dRp

∫ π

0

sin θdθ

∫ 2π

0

dϕ = 4π
∫ Rc(r)

Rc(0)

√
Ψ(Rc (r))R2

c(r)dRc

= 4π
∫ r

0

√
Ψ(Rc (r))R2

c(r)
dRc(r)

dr
dr.

Remarkably, in relation to metric (1), Celotti, Miller and Sciama [11] make the following assertion:

“The ‘mean density’ ρ of a black hole (its mass M divided by 4
3πr3

s) is proportional to 1/M2

where rs is the so-called “Schwarzschild radius”. The volume they adduce for a black hole cannot be obtained from
metric (1): it is a volume associated with the Euclidean 3-space described by metric (3).

Now in the case of the 2-dimensional metric manifold given by eq. (5) the Riemannian curvature associated with
eq. (4) (which depends upon both position and direction) reduces to the Gaussian curvature K (which depends
only upon position), and is given by [30,38,39,41–45],

K =
R1212

g
, (7)
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where R1212 is a component of the Riemann tensor of the 1st kind and g = g11g22 = gθθgϕϕ (because the metric
tensor of eq. (5) is diagonal). Gaussian curvature is an intrinsic geometric property of a surface (Theorema
Egregium1); independent of any embedding space.

Now recall from elementary differential geometry and tensor analysis that

Rµνρσ = gµγRγ
. νρσ

R1
. 212 =

∂Γ1
22

∂x1
− ∂Γ1

21

∂x2
+ Γk

22Γ
1
k1 − Γk

21Γ
1
k2

Γi
ij = Γi

ji =
∂

(
1
2 ln

∣∣gii

∣∣)
∂xj

Γi
jj = − 1

2gii

∂gjj

∂xi
, (i 6= j) (8)

and all other Γi
jk vanish. In the above, i, j, k =1, 2, x1 = θ, x2 =ϕ. Applying expressions (7) and (8) to expression

metric (5) gives,

K =
1

R2
c

(9)

so that Rc(r) is the inverse square root of the Gaussian curvature, i.e. the radius of Gaussian curvature, and
hence, in eq. (6) the quantity r therein is the radius of Gaussian curvature because this Gaussian curvature is
intrinsic to all geometric surfaces having the form of eq. (5) [30], and a geometry is completely determined by
the form of its line-element [33]. Note that according to eqs. (3), (6) and (7), the radius calculated for (3) gives
the same value as the associated radius of Gaussian curvature of a spherically symmetric surface embedded in the
space described by eq. (3). Thus, the Gaussian curvature (and hence the radius of Gaussian curvature) of the
spherically symmetric surface embedded in the space of (3) can be associated with the radius calculated from eq.
(3). This is a consequence of the Euclidean nature of the space described by metric (3), which also describes the
spatial section of Minkowski spacetime. However, this is not a general relationship. The inverse square root of the
Gaussian curvature (the radius of Gaussian curvature) is not a distance at all in Einstein’s gravitational manifold
but in fact determines the Gaussian curvature of the spherically symmetric geodesic surface through any point in
the spatial section of the gravitational manifold, as proven by expression (9). Thus, the quantity r in eq. (1) is the
inverse square root of the Gaussian curvature (i.e. the radius of Gaussian curvature) of a spherically symmetric
geodesic surface in the spatial section, not the radial geodesic distance from the centre of spherical symmetry of
the spatial section, or any other distance.

The platitudinus nature of the concepts “reduced circumference” and “areal radius” is now plainly evident -
neither concept correctly identifies the geometric nature of the quantity r in metric (1). The geodesic Cp in the
spherically symmetric geodesic surface in the spatial section of eq. (1) is a function of the curvilinear coordinate ϕ
and the surface area Ap is a function of the curvilinear coordinates θ and ϕ where, in both cases, r is a constant.
However, r therein has a clear and definite geometrical meaning: it is the inverse square root of the Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section. The Gaussian curvature K is a
positive constant bending invariant of the surface, independent of the values of θ and ϕ. Thus, neither Cp nor
Ap, or the infinite variations of them by means of the integrated values of θ and ϕ, rightly identify what r is in
line-element (1). To illustrate further, when θ = constant, the arc-length in the spherically symmetric geodesic
surface is given by:

s = s(ϕ) = r

∫ ϕ

0

sin θ dϕ = r sin θ ϕ, 0 ≤ ϕ ≤ 2π,

where r = constant. This is the equation of a straight line, of gradient ds/dϕ = r sin θ. If θ = const. = 1
2π then

s = s(ϕ) = rϕ, which is the equation of a straight line of gradient ds/dϕ = r. The maximum arc-length of the
geodesic θ = const. = 1

2π is therefore s(2π) = 2πr = Cp . Similarly the surface area is:

A = A(ϕ, θ) = r2

∫ θ

0

∫ ϕ

0

sin θ dθ dϕ = r2ϕ (1− cos θ) ,

1i.e. Gauss’ Most Excellent Theorem.
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0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π, r = constant.

The maximum area (i.e. the area of the entire surface) is A (2π, π) = 4πr2 = Ap. Clearly, neither s nor A are
functions of r, because r is a constant, not a variable. And since r appears in each expression (and so having the same
value in each expression), neither s nor A rightly identify the geometrical significance of r in the 1st fundamental
form for the spherically symmetric geodesic surface, ds2 = r2

(
dθ2 + sin2 θ dϕ2

)
, because r is not a distance in the

surface and is not the “radius” of the surface. The geometrical significance of r is intrinsic to the surface and is
determined from the components of the metric tensor and their derivatives (Gauss’ Theorema Egregium): it is the
inverse square root of the Gaussian curvature K of the spherically symmetric surface so described (the constant is
K = 1/r2). Thus, Cp and Ap are merely platitudinous expressions containing the constant r, and so the “reduced
circumference” r =Cp/2π and the “areal radius” r =

√
Ap/4π do not identify the geometric nature of r in either

metric (6) or metric (1), the former appearing in the latter. The claims by the astrophysical scientists that the
“areal radius” and the “reduced circumference” each define [21, 25, 48] (in two different ways) the constant r in eq.
(1) are entirely false. The “reduced circumference” and the “areal radius” are in fact one and the same, namely the
inverse square root of the Gaussian curvature of the spherically symmetric geodesic surface in the spatial section
of eq. (1), as proven above. No proponent of black holes is aware of this simple geometrical fact, which completely
subverts all claims made for black holes being predicted by General Relativity.

III. Derivation of Schwarzschild spacetime

The usual derivation begins with the following metric for Minkowski spacetime (using c=1),

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (10)

and proposes a generalisation thereof as or equivalent to,

ds2 = eλdt2 − eβdr2 −R2
(
dθ2 + sin2 θdϕ2

)
, (11)

where λ, β and R are all unknown real-valued functions of only the real variable r, to be determined, such that
the signature of metric (10) is maintained. The form of R(r) is then assumed so that R(r) = r, to get [5,8,9,21–
23,26,30,33,34,36,47–55],

ds2 = eλdt2 − eβdr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (12)

It is then required (see e.g. [48]) that eλ > 0 and eβ > 0 be determined so as to satisfy Rµν =0. Now note that eq.
(12) not only retains the signature −2, but also retains the signature (+,−,−,−), because eλ > 0 and
eβ > 0 by construction. Thus, neither eλ nor eβ can change sign [5, 48, 55]. This is a requirement since there is no
possibility for Minkowski spacetime (eq. 10) to change signature from (+,−,−,−) to, for example, (−,+,−,−).

The Standard Analysis then obtains the solution given by eq. (1), wherein the constant m is claimed to be the
mass generating the alleged associated gravitational field. By inspection of (1) the Standard Analysis asserts that
there are two singularities, one at r =2m and one at r =0. It is claimed that r =2m is a removable coordinate
singularity, and that r = 0 a physical singularity. It is also asserted that r =2m gives the event horizon (the
‘Schwarzschild radius’) of a black hole and that r =0 is the position of the infinitely dense point-mass singularity
of the black hole, produced by irresistible gravitational collapse.

However, these claims cannot be true. First, the construction of eq. (12) to obtain eq. (1) in satisfaction of
Rµν =0 is such that neither eλ nor eβ can change sign, because eλ > 0 and eβ > 0. Therefore the claim that r in
metric (1) can take values less than 2m is false; a contradiction by the very construction of the metric (12) leading
to metric eq. (1). Furthermore, since neither eλ nor eβ can ever be zero, the claim that r =2m is a removable
coordinate singularity is also false. In addition, the true nature of r in both eqs. (12) and (1) is entirely overlooked,
and the geometric relations between the components of the metric tensor, fixed by the form of the line-element,
are not applied, in consequence of which the Standard Analysis fatally falters.

To highlight further, rewrite eq. (11) as,

ds2 = A (Rc) dt2 −B (Rc) dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
, (13)

where A (Rc) , B (Rc) , Rc (r) > 0. The solution for Rµν =0 then takes the form,

ds2 =
(

1 +
κ

Rc

)
dt2 −

(
1 +

κ

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
,
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Rc = Rc(r),

where κ is a constant. There are two cases to consider; κ > 0 and κ < 0. In conformity with the astrophysical
scientists take κ < 0, and so set κ = −α, α > 0. Then the solution takes the form,

ds2 =
(

1− α

Rc

)
dt2 −

(
1− α

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
, (14)

Rc = Rc(r),

where α > 0 is a constant. It remains to determine the admissible form of Rc (r), which, from Section II, is the
inverse square root of the Gaussian curvature of a spherically symmetric geodesic surface in the spatial section of
the manifold associated with eq. (14), owing to the metrical form of eq. (14). From Section II herein the proper
radius associated with metric (14) is,

Rp =
∫

dRc√
1− α

Rc

=
√

Rc (Rc − α) + α ln
[√

Rc +
√

Rc − α
]

+ k, (15)

where k is a constant. Now for some ro, Rp (ro) = 0. Then by (15) it is required that Rc (ro) = α and k = −α ln
√

α,
so

Rp (r) =
√

Rc (Rc − α) + α ln

[√
Rc +

√
Rc − α

√
α

]
, (16)

Rc = Rc(r).

It is thus also determined that the Gaussian curvature of the spherically symmetric geodesic surface of the spatial
section ranges not from ∞ to 0, as it does for Euclidean 3-space, but from α−2 to 0. This is an inevitable
consequence of the peculiar non-Euclidean geometry described by metric (14).

Schwarzschild’s true solution, eq. (2), must be a particular case of the general expression sought for Rc(r).
Brillouin’s solution [2, 35] must also be a particular case, viz.,

ds2 =
(

1− α

r + α

)
dt2 −

(
1− α

r + α

)−1

dr2 − (r + α)2
(
dθ2 + sin2 θdϕ2

)
, (17)

0 < r < ∞,

and Droste’s solution [46] must as well be a particular solution, viz.,

ds2 =
(
1− α

r

)
dt2 −

(
1− α

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
.

α < r < ∞. (18)

All these solutions must be particular cases in an infinite set of equivalent metrics [34]. The only admissible form
for Rc (r) is [32],

Rc (r) = (|r − ro|
n + αn)

1
n =

1√
K (r)

,

r ∈ <, n ∈ <+, r 6= ro, (19)

where ro and n are entirely arbitrary constants. So the solution for Rµν =0 is,

ds2 =
(

1− α

Rc

)
dt2 −

(
1− α

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
,

Rc (r) = (|r − ro|
n + αn)

1
n =

1√
K (r)

,

r ∈ <, n ∈ <+, r 6= ro. (20)
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Then if ro =0, r > ro, n =1, Brillouin’s solution eq. (17) results. If ro =0, r > ro, n =3, then Schwarzschild’s
actual solution eq. (2) results. If ro =α, r > ro, n =1, then Droste’s solution eq. (18) results, which is the correct
solution in the particular metric of eq. (1). In addition the required infinite set of equivalent metrics is thereby
obtained, all of which are asymptotically Minkowski spacetime. Furthermore, if the constant α is set to zero, eqs.
(20) reduces to Minkowski spacetime, and if in addition ro is set to zero, then the usual Minkowski metric of eq.
(10) is obtained. The significance of the term |r − ro| was given in Section II: it is a shift of the location of the
centre of spherical symmetry in the spatial section of the auxiliary manifold away from the origin of coordinates of
the auxiliary manifold, along a radial line, to a point at distance ro from the origin of coordinates. The point ro

in the auxiliary manifold is mapped into the point Rp (ro) = 0 in Schwarzschild space, irrespective of the choice of
the parametric point ro in the auxiliary manifold. Minkowski spacetime is the auxiliary manifold for Schwarzschild
spacetime. Strictly speaking, the parameter r of the auxiliary manifold need not be incorporated into metric (20),
in which case the metric is defined only on α < Rc < ∞. I have retained the quantity r to fully illustrate its rôle
as a parameter and the part played by Minkowski spacetime as an auxiliary manifold.

It is clear from expressions (20) that there is only one singularity, at the arbitrary constant ro, where Rc (ro)
= α ∀ ro ∀ n and Rp (ro) = 0 ∀ ro ∀ n, and that all components of the metric tensor are affected by the constant
α. Hence, the “removal” of the singularity at r =2m in eq. (1) is fallacious, and, in a very real sense, is a removal
of the wrong singularity, because it is clear from expressions (20), in accordance with the intrinsic geometry of the
line-element as given in Section II, and the generalisation at eq. (13), that there is no singularity at r =0 in eq.
(1) and so 0 ≤ r ≤ 2m therein is meaningless [1–5,32,41,42,46,57,62]. The Standard claims for eq. (1) violate the
geometry fixed by the form of its line-element and contradict the generalisations at eqs. (11) and (12) from which
it has been obtained by the Standard method. There is therefore no black hole associated with eq. (1) since there
is no black hole associated with eq. (2) and none with eq. (20), of which Schwarzschild’s actual solution, eq. (2),
Brillouin’s solution, eq. (17), and Droste’s solution, eq. (18), are just particular equivalent cases.

In the case of κ > 0 the proper radius of the line-element is,

Rp =
∫

dRc√
1 + κ

Rc

=
√

Rc (Rc + κ)− κ ln
[√

Rc +
√

Rc + κ
]

+ k,

Rc = Rc(r),

where k is a constant. Now for some ro, Rp (ro) = 0, so it is required that Rc (ro) = 0 and k =κ ln
√

κ. The proper
radius is then,

Rp (r) =
√

Rc (Rc + κ)− κ ln

[√
Rc +

√
Rc + κ

√
κ

]
,

Rc = Rc(r).

The admissible form of Rc(r) must now be determined. According to Einstein, the metric must be asymptotically
Minkowski spacetime. Since κ > 0 by hypothesis, the application of the (spurious) argument for Newtonian
approximation used by the astrophysical scientists cannot be applied here. There are no other boundary conditions
that provide any means for determining the value of κ, and so it remains indeterminable. The only form that meets
the condition Rc (ro) = 0 and the requirement of asymptotic Minkowski spacetime is,

Rc(r) = |r − ro| =
1√
K

,

r ∈ <,

where ro is entirely arbitrary. Then Rp (ro) = 0 ∀ ro and Rc (ro) = 0 ∀ ro, and so, if explicit reference to the
auxiliary manifold of Minkowski spacetime is not desired, Rc(r) becomes superfluous and can be simply replaced
by Rc(r) = |r − ro| = ρ, 0 < ρ < ∞. Thus, points in the spatial section of this spacetime have the very same
properties of points in the spatial section of Minkowski spacetime. The line-element is again singular at only one
point; ρ =0 (i.e. in the case of explicit inclusion of the auxiliary manifold, only at the point r = ro). The signature
of this metric is always (+,−,−,−). Clearly there is no possibility for a black hole in this case either.
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The usual form of eq. (1) in isotropic coordinates is,

ds2 =

(
1− m

2r

)2(
1 + m

2r

)2 dt2 −
(
1 +

m

2r

)4 [
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
,

wherein it is again alleged that r can go down to zero. This expression has the very same metrical form as eq.
(13) and so shares the very same geometrical character. Now the coefficient of dt2 is zero when r =m/2, which,
according to the astrophysical scientists, marks the ‘radius’ or ‘event horizon’ of a black hole, and where m is the
alleged point-mass of the black hole singularity located at r =0, just as in eq. (1). This further amplifies the fact
that the quantity r appearing in both eq. (1) and its isotropic coordinate form is not a distance in the manifold
described by these line-elements. Applying the intrinsic geometric relations detailed in Section II above it is clear
that the inverse square root of the Gaussian curvature of a spherically symmetric geodesic surface in the spatial
section of the isotropic coordinate line-element is given by,

Rc(r) = r
(
1 +

m

2r

)2

and the proper radius is given by,

Rp(r) = r + m ln
(

2r

m

)
− m2

2r
+

m

2
.

Hence, Rc(m/2) =2m, and Rp(m/2) =0, which are scalar invariants necessarily consistent with eq. (20). Further-
more, applying the same geometrical analysis leading to eq. (20), the generalised solution in isotropic coordinates
is [57],

ds2 =

(
1− α

4h

)2(
1 + α

4h

)2 dt2 −
(
1 +

α

4h

)4 [
dh2 + h2

(
dθ2 + sin2 θdϕ2

)]
,

h = h(r) =
[
|r − ro|

n +
(α

4

)n] 1
n

,

r ∈ <, n ∈ <+, r 6= ro,

wherein ro and n are entirely arbitrary constants. Then,

Rc(r) = h(r)
(

1 +
α

4h(r)

)2

=
1√

K(r)
,

Rp(r) = h(r) +
α

2
ln

(
4h(r)

α

)
− α2

8h(r)
+

α

4
,

and so
Rc(ro) = α, Rp(ro) = 0, ∀ ro ∀ n,

which are scalar invariants, in accordance with eq. (20). Clearly in these isotropic coordinate expressions r does
not in itself denote any distance in the manifold, just as it does not in itself denote any distance in eq. (20) of which
eqs. (1) and (2) are particular cases. It is a parameter for the Gaussian curvature of the spherically symmetric
geodesic surface in the spatial section and for the proper radius (i.e. the radial geodesic distance from the point at
the centre of spherical symmetry of the spatial section). The ‘interior’ of the alleged Schwarzschild black hole does
not form part of the solution space of the Schwarzschild manifold [2, 4, 5, 32, 41, 42, 57, 61, 62, 63].

In the same fashion it is easily proven [32, 61] that the general expression for the Kerr-Newman geometry is
given by,

ds2 =
∆
ρ2

(
dt− a sin2 θdϕ2

)2 − sin2 θ

ρ2

[(
R2 + a2

)
dϕ− adt

]2 − ρ2

∆
dR2 − ρ2dθ2

R = R(r) = (|r − ro|
n + βn)

1
n , β =

α

2
+

√
α2

4
− (q2 + a2 cos2 θ), a2 + q2 <

α2

4
,

a =
2L

α
, ρ2 = R2 + a2 cos2 θ, ∆ = R2 − αR + q2 + a2,
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r ∈ <, n ∈ <+, r 6= ro.

The Kruskal-Szekeres coordinates, the Eddington-Finkelstein coordinates, and the Regge-Wheeler coordinates
do not take into account the rôle of Gaussian curvature of the spherically symmetric geodesic surface in the spatial
section of the Schwarzschild manifold [64], and so they thereby violate the geometric form of the line-element,
making them invalid.

The foregoing amplifies the inadmissibility of the introduction of the Newtonian potential into Schwarzschild
spacetime. The Newtonian potential is a two-body concept; it is defined as the work done per unit mass against
the gravitational field of some other mass. There is no meaning to a Newtonian potential for a single mass in an
otherwise empty Universe. Newton’s theory of gravitation is defined in terms of the interaction of two masses in a
space for which the ‘Principle of Superposition’ applies. In Newton’s theory there is no limit set to the number of
masses that can be piled up in space, although the analytical relations for the gravitational interactions of many
bodies upon one another quickly become intractable. In Einstein’s theory matter cannot be piled up in a given
spacetime because the matter itself determines the structure of the spacetime containing the matter. It is clearly
impossible for Schwarzschild spacetime, which is alleged by the astrophysical scientists to contain one mass in an
otherwise totally empty Universe, to reduce to or otherwise contain an expression that is defined in terms of the a
priori interaction of two masses. This is illustrated even further by writing eq. (1) in terms of c and G explicitly,

ds2 =
(

c2 − 2Gm

r

)
dt2 −

(
1− 2Gm

rc2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
.

The term 2Gm/r is the square of the Newtonian escape velocity from a mass m. And so the astrophysical scientists
assert that when the “escape velocity” is that of light in vacuum, there is an event horizon and hence a black hole.
But escape velocity is a concept that involves two bodies. Even though one mass appears in the expression for
escape velocity, it cannot be determined without recourse to a fundamental two-body gravitational interaction.
Recall that Newton’s Universal Law of Gravitation is,

Fg = −G
mM

r2
,

where G is the gravitational constant and r is the distance between the centre of mass of m and the centre of mass
of M . A centre of mass is an infinitely dense point-mass, but it is not a physical object; merely a mathematical
artifice. Newton’s gravitation is clearly defined in terms of the interaction of two bodies. Newton’s gravitational
potential Φ is defined as,

Φ ≡ −
∫ r

∞

Fg

m
dr = −G

M

r
,

which is the work done per unit mass in the gravitational field due to mass M , against the gravitational field of
the mass M . This is a two-body concept. The potential energy P of a mass m in the gravitational field of a mass
M is therefore given by,

P = mΦ = −G
mM

r
,

which is clearly a two-body concept.
Similarly, the velocity required by a mass m to escape from the gravitational field of a mass M is determined

by,

Fg = −G
mM

r2
= ma = m

dv

dt
= mv

dv

dr
.

Separating variables and integrating gives,∫ v

0

mv dv = −GmM

∫ R

∞

dr

r2
,

whence

v =

√
2GM

R
,
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where R is the radius of the mass M . Thus, escape velocity necessarily involves two bodies: m escapes from M .
In terms of the conservation of kinetic and potential energies,

Ki + Pi = Kf + Pf

whence,
1
2
mv2 −G

mM

R
=

1
2
mv2

f −G
mM

rf
.

Then as rf →∞, vf → 0, and the escape velocity of m from M is,

v =

√
2GM

R
.

Once again, the relation is derived from a two-body gravitational interaction.
The consequence of all this for black holes and their associated gravitational waves is that there can be no

gravitational waves generated by black holes because the latter are fictitious.

IV. The prohibition of point-mass singularities

The black hole is alleged to contain an infinitely dense point-mass singularity, produced by irresistible gravita-
tional collapse (see for example [17, 24], for the typical claim). The singularity of the alleged Big Bang cosmology
is, according to many proponents of the Big Bang, also infinitely dense. Yet according to Special Relativity, infinite
densities are forbidden because their existence implies that a material object can acquire the speed of light c in
vacuo (or equivalently, the existence of infinite energies), thereby violating the very basis of Special Relativity.
Since General Relativity cannot violate Special Relativity, General Relativity must therefore also forbid infinite
densities. Point-mass singularities are alleged to be infinitely dense objects. Therefore, point-mass singularities are
forbidden by the Theory of Relativity.

Let a cuboid rest-mass m0 have sides of length L0. Let m0 have a relative speed v < c in the direction of one
of three mutually orthogonal Cartesian axes attached to an observer of rest-mass M0 . According to the observer
M0 , the moving mass m is

m =
m0√
1− v2

c2

,

and the volume V thereof is

V = L3
0

√
1− v2

c2
.

Thus, the density D is

D =
m

V
=

m0

L3
0

(
1− v2

c2

) ,

and so v → c ⇒ D → ∞. Since, according to Special Relativity, no material object can acquire the speed c
(this would require an infinite energy), infinite densities are forbidden by Special Relativity, and so point-mass
singularities are forbidden. Since General Relativity cannot violate Special Relativity, it too must thereby forbid
infinite densities and hence forbid point-mass singularities. It does not matter how it is alleged that a point-mass
singularity is generated by General Relativity because the infinitely dense point-mass cannot be reconciled with
Special Relativity.

Point-charges too are therefore forbidden by the Theory of Relativity since there can be no charge without
mass.

It is nowadays routinely claimed that many black holes have been found. The signatures of the black hole are
(a) an infinitely dense ‘point-mass’ singularity and (b) an event horizon. Nobody has ever found an infinitely dense
‘point-mass’ singularity and nobody has ever found an event horizon, so nobody has ever assuredly found a black
hole. It takes an infinite amount of observer time to verify a black hole event horizon [24, 28, 36, 48, 54, 56, 71].
Nobody has been around and nobody will be around for an infinite amount of time and so no observer can ever
verify the presence of an event horizon, and hence a black hole, in principle, and so the notion is irrelevant to
physics. All reports of black holes being found are patently false; the product of wishful thinking.
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V. Laplace’s alleged black hole

It has been claimed by the astrophysical scientists that a black hole has an escape velocity c (c the speed of
light in vacuo) [6,12–14,16,18,19,24,28,74,75]. Chandrasekhar [24] remarked,

“Let me be more precise as to what one means by a black hole. One says that a black hole is formed
when the gravitational forces on the surface become so strong that light cannot escape from it.

... A trapped surface is one from which light cannot escape to infinity.”

However, according to the alleged properties of a black hole, nothing at all can even leave the black hole. In
the very same paper Chandrasekhar made the following quite typical contradictory assertion propounded by the
astrophysical scientists:

“The problem we now consider is that of the gravitational collapse of a body to a volume so small that
a trapped surface forms around it; as we have stated, from such a surface no light can emerge.”

Hughes [28] reiterates,

“Things can go into the horizon (from r > 2M to r < 2M), but they cannot get out; once inside, all
causal trajectories (timelike or null) take us inexorably into the classical singularity at r =0.

“The defining property of black holes is their event horizon. Rather than a true surface, black holes
have a ‘one-way membrane’ through which stuff can go in but cannot come out.”

Taylor and Wheeler [25] assert,

“... Einstein predicts that nothing, not even light, can be successfully launched outward from the horizon
... and that light launched outward EXACTLY at the horizon will never increase its radial position by
so much as a millimeter.”

Now if its escape velocity is really that of light in vacuo, then by definition of escape velocity, light would escape
from a black hole, and therefore be seen by all observers. If the escape velocity of the black hole is greater than that
of light in vacuo, then light could emerge but not escape, and so there would always be a class of observers that
could see it. Not only that, if the black hole had an escape velocity, then material objects with an initial velocity
less than the alleged escape velocity, could leave the black hole, and therefore be seen by a class of observers, but
not escape (just go out, come to a stop and then fall back), even if the escape velocity is ≥ c. Escape velocity
does not mean that objects cannot leave; it only means they cannot escape if they have an initial velocity less than
the escape velocity. So on the one hand it is claimed that black holes have an escape velocity c, but on the other
hand that nothing, not even light, can even leave the black hole. The claims are contradictory - nothing but a
meaningless play on the words “escape velocity” [67, 68]. Furthermore, as demonstrated in Section III, escape
velocity is a two-body concept, whereas the black hole is derived not from a two-body gravitational interaction,
but from a one-body concept. The black hole has no escape velocity.

It is also routinely asserted that the theoretical Michell-Laplace (M-L) dark body of Newton’s theory, which
has an escape velocity ≥ c, is a kind of black hole [6, 11, 14, 24] or that Newton’s theory somehow predicts “the
radius of a black hole” [25]. But the M-L dark body is not a black hole. The M-L dark body possesses an escape
velocity, whereas the black hole has no escape velocity; objects can leave the M-L dark body, but nothing can leave
the black hole; it does not require irresistible gravitational collapse, whereas the black hole does; it has no infinitely
dense point-mass singularity, whereas the black hole does; it has no event horizon, whereas the black hole does;
there is always a class of observers that can see the M-L dark body [67, 68], but there is no class of observers that
can see the black hole; the M-L dark body can persist in a space which contains other matter and interact with
that matter, but the spacetime of the “Schwarzschild” black hole (and variants thereof) is devoid of matter by
construction and so it cannot interact with anything. Thus the M-L dark body does not possess the characteristics
of the alleged black hole and so it is not a black hole.

VI. Black hole interactions and gravitational collapse

The literature abounds with claims that black holes can interact in such situations as binary systems, mergers,
collisions, and with surrounding matter generally. According to Chandrasekhar [24], for example, who also cites S.
Hawking,
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“From what I have said, collapse of the kind I have described must be of frequent occurrence in the
Galaxy; and black-holes must be present in numbers comparable to, if not exceeding, those of the pulsars.
While the black-holes will not be visible to external observers, they can nevertheless interact with one
another and with the outside world through their external fields.

“In considering the energy that could be released by interactions with black holes, a theorem of Hawking
is useful. Hawking’s theorem states that in the interactions involving black holes, the total
surface area of the boundaries of the black holes can never decrease; it can at best remain
unchanged (if the conditions are stationary).

“Another example illustrating Hawking’s theorem (and considered by him) is the following. Imagine two
spherical (Schwarzschild) black holes, each of mass 1

2M , coalescing to form a single black hole; and let
the black hole that is eventually left be, again, spherical and have a mass M . Then Hawking’s theorem
requires that

16πM
2 ≥ 16π

[
2

(
1
2
M

)2
]

= 8πM2

or

M ≥ M/
√

2.

Hence the maximum amount of energy that can be released in such a coalescence is

M
(
1− 1/

√
2
)

c2 = 0.293Mc2.

According to Schutz [48],

“... Hawking’s area theorem: in any physical process involving a horizon, the area of the horizon cannot
decrease in time. ... This fundamental theorem has the result that, while two black holes can collide
and coalesce, a single black hole can never bifurcate spontaneously into two smaller ones.

“Black holes produced by supernovae would be much harder to observe unless they were part of a binary
system which survived the explosion and in which the other star was not so highly evolved.”

Townsend [56] also arbitrarily applies the ‘Principle of Superposition’ to obtain charged black hole (Reissner-
Nordström) interactions as follows:

“The extreme RN in isotropic coordinates is

ds2 = −V −2dt2 + V 2
(
dρ2 + ρ2dΩ2

)
where

V = 1 +
M

ρ

This is a special case of the multi black hole solution

ds2 = −V −2dt2 + V 2d~x · d~x

where d~x · d~x is the Euclidean 3-metric and V is any solution of ∇2V =0. In particular

V = 1 +
N∑

i = 1

Mi∣∣∣~x− ~xi

∣∣∣
yields the metric for N extreme black holes of masses Mi at positions xi.
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Now Einstein’s field equations are non-linear, so the ‘Principle of Superposition’ does not apply [51, 67].
Therefore, before one can talk of black hole binary systems and the like it must first be proven that the two-body
system is theoretically well-defined by General Relativity. This can be done in only two ways:

(a) Derivation of an exact solution to Einstein’s field equations for the two-body configuration of matter; or

(b) Proof of an existence theorem.

There are no known solutions to Einstein’s field equations for the interaction of two (or more) masses (charged
or not), so option (a) has never been fulfilled. No existence theorem has ever been proven, by which Einstein’s
field equations even be said to admit of latent solutions for such configurations of matter, and so option (b) has
never been fulfilled. The “Schwarzschild” black hole is allegedly obtained from a line-element satisfying Ric =0.
For the sake of argument, assuming that black holes are predicted by General Relativity as alleged in relation to
metric (1), since Ric=0 is a statement that there is no matter in the Universe, one cannot simply insert a second
black hole into the spacetime of Ric =0 of a given black hole so that the resulting two black holes (each obtained
separately from Ric=0) mutually persist in and mutually interact in a mutual spacetime that by construction
contains no matter! One cannot simply assert by an analogy with Newton’s theory that two black holes can be
components of binary systems, collide or merge [51, 67, 68], because the ‘Principle of Superposition’ does not apply
in Einstein’s theory. Moreover, General Relativity has to date been unable to account for the simple experimental
fact that two fixed bodies will approach one another upon release. Thus, black hole binaries, collisions, mergers,
black holes from supernovae, and other black hole interactions are all invalid concepts.

Much of the justification for the notion of irresistible gravitational collapse into an infinitely dense point-mass
singularity, and hence the formation of a black hole, is given to the analysis due to Oppenheimer and Snyder [69].
Hughes [28] relates it as follows;

“In an idealized but illustrative calculation, Oppenheimer and Snyder ... showed in 1939 that a black
hole in fact does form in the collapse of ordinary matter. They considered a ‘star’ constructed out
of a pressureless ‘dustball’. By Birkhof’s Theorem, the entire exterior of this dustball is given by the
Schwarzschild metric ... . Due to the self-gravity of this ‘star’, it immediately begins to collapse. Each
mass element of the pressureless star follows a geodesic trajectory toward the stars center; as the collapse
proceeds, the star’s density increases and more of the spacetime is described by the Schwarzschild metric.
Eventually, the surface passes through r =2M . At this point, the Schwarzschild exterior includes an
event horizon: A black hole has formed. Meanwhile, the matter which formerly constituted the star
continues collapsing to ever smaller radii. In short order, all of the original matter reaches r =0 and
is compressed (classically!) into a singularity4.

4“Since all of the matter is squashed into a point of zero size, this classical singularity must be modified in a

a complete, quantum description. However, since all the singular nastiness is hidden behind an event horizon

where it is causally disconnected from us, we need not worry about it (at least for astrophysical black holes).”

Note that the ‘Principle of Superposition’ has again been arbitrarily applied by Oppenheimer and Snyder, from the
outset. They first assume a relativistic universe in which there are multiple mass elements present a priori, where
the ‘Principle of Superposition’ however, does not apply, and despite there being no solution or existence theorem
for such configurations of matter in General Relativity. Then all these mass elements “collapse” into a central
point (zero volume; infinite density). Such a collapse has however not been given any specific general relativistic
mechanism in this argument; it is simply asserted that the “collapse” is due to self-gravity. But the “collapse”
cannot be due to Newtonian gravitation, given the resulting black hole, which does not occur in Newton’s theory
of gravitation. And a Newtonian universe cannot “collapse” into a non-Newtonian universe. Moreover, the black
hole so formed is in an empty universe, since the “Schwarzschild black hole” relates to Ric =0, a spacetime that
by construction contains no matter. Nonetheless, Oppenheimer and Snyder permit, within the context of General
Relativity, the presence of and the gravitational interaction of many mass elements, which coalesce and collapse into
a point of zero volume to form an infinitely dense point-mass singularity, when there is no demonstrated general
relativistic mechanism by which any of this can occur.

Furthermore, nobody has ever observed a celestial body undergo irresistible gravitational collapse and there is
no laboratory evidence whatsoever for such a phenomenon.
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VII. Further consequences for gravitational waves

The question of the localisation of gravitational energy is related to the validity of the field equations Rµν =0,
for according to Einstein, matter is the cause of the gravitational field and the causative matter is described in his
theory by a mathematical object called the energy-momentum tensor, which is coupled to geometry (i.e. spacetime)
by his field equations, so that matter causes spacetime curvature (his gravitational field). Einstein’s field equations,

“... couple the gravitational field (contained in the curvature of spacetime) with its sources.” [36]

“Since gravitation is determined by the matter present, the same must then be postulated for geometry,
too. The geometry of space is not given a priori, but is only determined by matter.” [53]

“Again, just as the electric field, for its part, depends upon the charges and is instrumental in producing
mechanical interaction between the charges, so we must assume here that the metrical field (or,
in mathematical language, the tensor with components gik) is related to the material filling the
world.” [5]

“... we have, in following the ideas set out just above, to discover the invariant law of gravitation,
according to which matter determines the components Γα

βι of the gravitational field, and
which replaces the Newtonian law of attraction in Einstein’s Theory.”[5]

“Thus the equations of the gravitational field also contain the equations for the matter (material particles
and electromagnetic fields) which produces this field.” [51]

“Clearly, the mass density, or equivalently, energy density % (~x, t) must play the role as a source. How-
ever, it is the 00 component of a tensor Tµν (x), the mass-energy-momentum distribution of matter.
So, this tensor must act as the source of the gravitational field.” [10]

Qualitatively Einstein’s field equations are:

Spacetime geometry = -κ × causative matter (i.e. material sources)

where causative matter is described by the energy-momentum tensor and κ is a constant. The spacetime geometry
is described by a mathematical object called Einstein’s tensor, Gµν , (µ, ν = 0, 1, 2, 3) and the energy-momentum
tensor is Tµν . So Einstein’s full field equations are2:

Gµν = Rµν −
1
2
Rgµν = −κTµν . (21)

Einstein asserted that his ‘Principle of Equivalence’ and his laws of Special Relativity must hold in a sufficiently
small region of his gravitational field. Here is what Einstein [52] himself said in 1954, the year before his death:

“Let now K be an inertial system. Masses which are sufficiently far from each other and from other
bodies are then, with respect to K, free from acceleration. We shall also refer these masses to a system
of co-ordinates K’,uniformly accelerated with respect to K. Relatively to K’ all the masses have equal
and parallel accelerations; with respect to K’ they behave just as if a gravitational field were present and
K’ were unaccelerated. Overlooking for the present the question as to the ‘cause’ of such a gravitational
field, which will occupy us later, there is nothing to prevent our conceiving this gravitational field as
real, that is, the conception that K’ is ‘at rest’ and a gravitational field is present we may consider as
equivalent to the conception that only K is an ‘allowable’ system of co-ordinates and no gravitational
field is present. The assumption of the complete physical equivalence of the systems of coordinates,
K and K’, we call the ‘principle of equivalence’; this principle is evidently intimately connected with
the law of the equality between the inert and the gravitational mass, and signifies an extension of the
principle of relativity to co-ordinate systems which are in non-uniform motion relatively to each other.
In fact, through this conception we arrive at the unity of the nature of inertia and gravitation. For,

2The so-called “cosmological constant” is not included.
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according to our way of looking at it, the same masses may appear to be either under the action of iner-
tia alone (with respect to K) or under the combined action of inertia and gravitation (with respect to K’).

“Stated more exactly, there are finite regions, where, with respect to a suitably chosen space of reference,
material particles move freely without acceleration, and in which the laws of special relativity, which have
been developed above, hold with remarkable accuracy.”

In their textbook, Foster and Nightingale [36] succinctly state the ‘Principle of Equivalence’ thus:

“We may incorporate these ideas into the principle of equivalence, which is this: In a freely falling
(nonrotating) laboratory occupying a small region of spacetime, the laws of physics are the laws of
special relativity.”

According to Pauli [53],

“We can think of the physical realization of the local coordinate system Ko in terms of a freely floating,
sufficiently small, box which is not subjected to any external forces apart from gravity, and which is
falling under the influence of the latter. ... “It is evidently natural to assume that the special theory of
relativity should remain valid in Ko .”

Taylor and Wheeler state in their book [25],

“General Relativity requires more than one free-float frame.”

Note that the ‘Principle of Equivalence’ involves the a priori presence of multiple arbitrarily large finite masses.
Similarly, the laws of Special Relativity involve the a priori presence of at least two arbitrarily large finite masses; for
otherwise relative motion between two bodies cannot manifest. The postulates of Special Relativity are themselves
couched in terms of inertial systems, which are in turn defined in terms of mass via Newton’s First Law of motion.

In the space of Newton’s theory of gravitation, one can simply put in as many masses as one pleases. Although
solving for the gravitational interaction of these masses rapidly becomes beyond our capacity, there is nothing to
prevent us inserting masses conceptually. This is essentially the ‘Principle of Superposition’. However, one cannot
do this in General Relativity, because Einstein’s field equations are non-linear. In General Relativity, each and every
configuration of matter must be described by a corresponding energy-momentum tensor and the field equations
solved separately for each and every such configuration, because matter and geometry are coupled, as eq. (21)
describes. Not so in Newton’s theory where geometry is independent of matter. The ‘Principle of Superposition’
does not apply in General Relativity:

“In a gravitational field, the distribution and motion of the matter producing it cannot at all be assigned
arbitrarily — on the contrary it must be determined (by solving the field equations for given initial
conditions) simultaneously with the field produced by the same matter.” [51]

Now Einstein and the relevant physicists assert that the gravitational field “outside” a mass contains no matter,
and so they assert that Tµν =0, and that there is only one mass in the whole Universe with this particular problem
statement. But setting the energy-momentum tensor to zero means that there is no matter present by which the
gravitational field can be caused! Nonetheless, it is so claimed, and it is also claimed that the field equations then
reduce to the much simpler form,

Rµν = 0. (22)

So this is a statement that spacetime is devoid of matter. However, since this is a spacetime that by construction
contains no matter, Einstein’s ‘Principle of Equivalence’ and his laws of Special Relativity cannot manifest, thus
violating the physical requirements of the gravitational field that Einstein himself laid down. It has never been
proven that Einstein’s ‘Principle of Equivalence’ and his laws of Special Relativity, both of which are defined
in terms of the a priori presence of multiple arbitrary large finite masses, can manifest in a spacetime that by
construction contains no matter. Indeed, it is a contradiction; so Rµν = 0 fails. Now eq. (1) relates to eq. (22).
However, there is allegedly mass present, denoted by m in eq. (1). This mass is not described by an energy-
momentum tensor. That m is actually responsible for the alleged gravitational field associated with eq. (1) is
confirmed by the fact that if m =0, eq. (1) reduces to Minkowski spacetime, and hence no gravitational field.
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So if not for the presence of the alleged mass m in eq. (1) there is no gravitational field. But this contradicts
Einstein’s relation between geometry and matter, since m is introduced into eq. (1) post hoc, not via an energy-
momentum tensor describing the matter causing the associated gravitational field. The components of the metric
tensor are functions of only one another, and reduce to functions of only one component of the metric tensor. None
of the components of the metric tensor contain matter, because the energy-momentum tensor is zero. There is no
transformation of matter in Minkowski spacetime into Schwarzschild spacetime, and so the laws of Special Relativity
are not transformed into a gravitational field by Ric = 0. The transformation is merely from a pseudo-Euclidean
geometry containing no matter into a pseudo-Riemannian (non-Euclidean) geometry containing no matter. Matter
is introduced into the spacetime of Ric = 0 by means of a vicious circle, as follows. It is stated at the outset
that Ric = 0 describes spacetime “outside a body”. The words “outside a body” introduce matter, contrary to
the energy-momentum tensor, Tµν =0, that describes the causative matter as being absent. There is no matter
involved in the transformation of Minkowski spacetime into Schwarzschild spacetime via Ric =0, since the energy-
momentum tensor is zero, making the components of the resulting metric tensor functions solely of one another,
and reducible to functions of just one component of the metric tensor. To satisfy the initial claim that Ric = 0
describes spacetime “outside a body”, so that the resulting spacetime is caused by the alleged mass present, the
alleged causative mass is inserted into the resulting metric ad hoc, by means of a contrived analogy with Newton’s
theory, thus closing the vicious circle. Here is how Chandrasekhar [24] presents the vicious circle:

“That such a contingency can arise was surmised already by Laplace in 1798. Laplace argued as follows.
For a particle to escape from the surface of a spherical body of mass M and radius R, it must be projected
with a velocity v such that 1

2v2 > GM/R; and it cannot escape if v2 < 2GM/R. On the basis of this
last inequality, Laplace concluded that if R < 2GM/c2 =Rs (say) where c denotes the velocity of light,
then light will not be able to escape from such a body and we will not be able to see it!

“By a curious coincidence, the limit Rs discovered by Laplace is exactly the same that general relativity
gives for the occurrence of the trapped surface around a spherical mass.”

But it is not surprising that general relativity “gives” the same Rs obtained by Laplace because the Newtonian
potential is deliberately inserted post hoc by the astrophysical scientists into the so-called “Schwarzschild solution”
to make it so. Newton’s potential function does not drop out of any of the calculations to Schwarzschild spacetime.
Furthermore, although Ric =0 is claimed to describe spacetime “outside a body”, the resulting metric (1) is
nonetheless used to describe the interior of a black hole, since the black hole begins at the alleged “event horizon”,
not at its infinitely dense point-mass singularity (said to be at r =0 in eq. (1)).

In the case of a totally empty Universe, what would be the relevant energy-momentum tensor? It must be
Tµν =0. Indeed, it is also claimed that spacetimes can be intrinsically curved, i.e. that there are gravitational
fields that have no material cause. An example is de Sitter’s empty spherical Universe, based upon the following
field equations [33, 34]:

Rµν = λgµν (23)

where λ is the so-called ‘cosmological constant’. In the case of metric (1) the field equations are given by expression
(22). On the one hand de Sitter’s empty world is devoid of matter (Tµν =0) and so has no material cause for the
alleged associated gravitational field. On the other hand it is claimed that the spacetime described by eq. (22) has
a material cause, post hoc as m in metric (1), even though Tµν =0 there as well: a contradiction. This is amplified
by the so-called “Schwarzschild-de Sitter” line-element,

ds2 =
(

1− 2m

r
− λ

3
r2

)
dt2 −

(
1− 2m

r
− λ

3
r2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (24)

which is the standard solution for eq. (23). Once again, m is identified post hoc as mass at the centre of spherical
symmetry of the manifold, said to be at r =0. The completely empty universe of de Sitter [33, 34] can be obtained
by setting m =0 in eq. (24) to yield,

ds2 =
(

1− λ

3
r2

)
dt2 −

(
1− λ

3
r2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (25)

Also, if λ =0, eq. (23) reduces to eq. (22) and eq. (24) reduces to eq. (1). If both λ =0 and m =0, eqs. (24)
and (25) reduce to Minkowski spacetime. Now in eq. (23) the term λgµν is not an energy-momentum tensor.
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The universe described by eq. (25), which also satisfies eq. (23), is completely empty and so its curvature has no
material cause; in eq. (23), just as in eq. (22), Tµν =0. So eq. (25) is alleged to describe a gravitational field that
has no material cause. Furthermore, although in eq. (22), Tµν =0, its usual solution, eq. (1), is said to contain a
(post hoc) material cause, denoted by m therein. Thus for eq. (1) it is claimed that Tµν =0 supports a material
cause of a gravitational field, but at the same time, for eq. (25), Tµν =0 is also claimed to preclude material cause
of a gravitational field. So Tµν =0 is claimed to include and to exclude material cause. This is not possible. The
contradiction is due to the post hoc introduction of mass, as m, in eq. (1). Furthermore, there is no experimental
evidence to support the claim that a gravitational field can be generated without a material cause. Material cause
is codified theoretically in eq. (21).

Since Rµν =0 cannot describe Einstein’s gravitational field, Einstein’s field equations cannot reduce to Rµν =0
when Tµν =0. In other words, if Tµν =0 (i.e. there is no matter present) then there is no gravitational field.
Consequently Einstein’s field equations must take the form [58, 59],

Gµν

κ
+ Tµν = 0. (26)

The Gµν/κ are the components of a gravitational energy tensor. Thus the total energy of Einstein’s gravitational
field is always zero; the Gµν/κ and the Tµν must vanish identically (i.e. when Tµν =0 then Gµν =0 and vice-versa);
there is no possibility for the localization of gravitational energy (i.e. there are no Einstein gravitational waves).
This also means that Einstein’s gravitational field violates the experimentally well-established usual conservation
of energy and momentum [53]. Since there is no experimental evidence that the usual conservation of energy and
momentum is invalid, Einstein’s General Theory violates the experimental evidence, and so it is invalid.

In an attempt to circumvent the foregoing conservation problem, Einstein invented his gravitational pseudo-
tensor. His invention had a two-fold purpose (a) to bring his theory into line with the usual conservation of
energy and momentum, (b) to enable him to get gravitational waves that propagate with speed c. First, Einstein’s
gravitational pseudo-tensor is not a tensor, and therefore not in keeping with his theory that all equations be
tensorial. Second, he constructed his pseudo-tensor in such a way that it behaves like a tensor in one particular
situation, that in which he could get gravitational waves with speed c. Now Einstein’s pseudo-tensor is claimed
to represent the energy and momentum of the gravitational field and it is routinely applied in relation to the
localisation of gravitational energy, the conservation of energy and the flow of energy and momentum.

Dirac [54] pointed out that,

“It is not possible to obtain an expression for the energy of the gravitational field satisfying both the
conditions: (i) when added to other forms of energy the total energy is conserved, and (ii) the energy
within a definite (three dimensional) region at a certain time is independent of the coordinate system.
Thus, in general, gravitational energy cannot be localized. The best we can do is to use the pseudo-
tensor, which satisfies condition (i) but not condition (ii). It gives us approximate information about
gravitational energy, which in some special cases can be accurate.”

On gravitational waves Dirac [54] remarked,

“Let us consider the energy of these waves. Owing to the pseudo-tensor not being a real tensor, we do
not get, in general, a clear result independent of the coordinate system. But there is one special case in
which we do get a clear result; namely, when the waves are all moving in the same direction.”

About the propagation of gravitational waves Eddington [34] remarked (gµν = δµν + hµν),

∂2hµν

∂t2
−

∂2hµν

∂x2
−

∂2hµν

∂y2
−

∂2hµν

∂z2
= 0,

“... showing that the deviations of the gravitational potentials are propagated as waves with unit velocity,
i.e. the velocity of light. But it must be remembered that this representation of the propagation, though
always permissible, is not unique. ... All the coordinate-systems differ from Galilean coordinates by small
quantities of the first order. The potentials gµν pertain not only to the gravitational influence which
is objective reality, but also to the coordinate-system which we select arbitrarily. We can ‘propagate’
coordinate-changes with the speed of thought, and these may be mixed up at will with the more dilatory
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propagation discussed above. There does not seem to be any way of distinguishing a physical and a
conventional part in the changes of the gµν .

“The statement that in the relativity theory gravitational waves are propagated with the speed of light
has, I believe, been based entirely upon the foregoing investigation; but it will be seen that it is only true
in a very conventional sense. If coordinates are chosen so as to satisfy a certain condition which has
no very clear geometrical importance, the speed is that of light; if the coordinates are slightly different
the speed is altogether different from that of light. The result stands or falls by the choice of coordinates
and, so far as can be judged, the coordinates here used were purposely introduced in order to obtain the
simplification which results from representing the propagation as occurring with the speed of light. The
argument thus follows a vicious circle.”

Now Einstein’s pseudo-tensor,
√
−g tµν , is defined by [23, 33, 34, 53, 54, 58, 60],

√
−g tµν =

1
2

(
δµ
ν L− ∂L

∂gσρ
,µ

gσρ
,ν

)
, (27)

wherein L is given by
L = −gαβ

(
Γγ

ακΓκ
βγ − Γγ

αβΓκ
γκ

)
. (28)

In a remarkable paper published in 1917, T. Levi-Civita [58] provided a clear and rigorous proof that Einstein’s
pseudo-tensor is meaningless, and therefore any argument relying upon it is fallacious. I repeat Levi-Civita’s proof.
Contracting eq. (27) produces a linear invariant, thus

√
−g tµµ =

1
2

(
4L− ∂L

∂gσρ
,µ

gσρ
,µ

)
. (29)

Since L is, according to eq. (28), quadratic and homogeneous with respect to the Riemann-Christoffel symbols,
and therefore also with respect to gσρ

,µ , one can apply Euler’s theorem to obtain (also see [34]),

∂L

∂gσρ
,µ

gσρ
,µ = 2L. (30)

Substituting expression (30) into expression (29) yields the linear invariant at L. This is a first-order, intrinsic
differential invariant that depends only on the components of the metric tensor and their first derivatives. However,
the mathematicians G. Ricci-Curbastro and T. Levi-Civita [65] proved, in 1900, that such invariants do not exist.
This is sufficient to render Einstein’s pseudo-tensor entirely meaningless, and hence all arguments relying on it
false. Einstein’s conception of the conservation of energy in the gravitational field is erroneous.

Linearisation of Einstein’s field equations and associated perturbations have been popular. “The existence
of exact solutions corresponding to a solution to the linearised equations must be investigated before perturbation
analysis can be applied with any reliability” [21]. Unfortunately, the astrophysical scientists have not properly
investigated. Indeed, linearisation of the field equations is inadmissible, even though the astrophysical scientists
write down linearised equations and proceed as though they are valid, because linearisation of the field equations
implies the existence of a tensor which, except for the trivial case of being precisely zero, does not exist; proven
by Hermann Weyl [66] in 1944.

VIII. Other Violations

In writing eq. (1) the Standard Model incorrectly asserts that only the components g00 and g11 are modified
by Rµν =0. However, it is plain by expressions (20) that this is false. All components of the metric tensor are
modified by the constant α appearing in eqs. (20), of which metric (1) is but a particular case.

The Standard Model asserts in relation to metric (1) that a ‘true’ singularity must occur where the Riemann
tensor scalar curvature invariant (i.e. the Kretschmann scalar) is unbounded [21, 23, 50]. However, it has never been
proven that Einstein’s field equations require such a curvature condition to be fulfilled: in fact, it is not required
by General Relativity. Since the Kretschmann scalar is finite at r =2m in metric (1), it is also claimed that
r =2m marks a “coordinate singularity” or “removable singularity”. However, these assertions violate the intrinsic
geometry of the manifold described by metric (1). The Kretschmann scalar depends upon all the components of the
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metric tensor and all the components of the metric tensor are functions of the Gaussian curvature of the spherically
symmetric geodesic surface in the spatial section, owing to the form of the line-element. The Kretschmann scalar
is not therefore an independent curvature invariant. Einstein’s gravitational field is manifest in the curvature
of spacetime, a curvature induced by the presence of matter. It should not therefore be unexpected that the
Gaussian curvature of a spherically symmetric geodesic surface in the spatial section of the gravitational manifold
might also be modified from that of ordinary Euclidean space, and this is indeed the case for eq. (1). Metric
(20) gives the modification of the Gaussian curvature fixed by the intrinsic geometry of the line-element and the
required boundary conditions specified by Einstein and the astrophysical scientists, in consequence of which the
Kretschmann scalar is constrained by the Gaussian curvature of the spherically symmetric geodesic surface in the
spatial section. Recall that the Kretschmann scalar f is,

f = RαβγδR
αβγδ.

Using metric (20) gives,

f = 12α2K3 =
12α2

R6
c

=
12α2

(|r − ro|
n + αn)

6
n

,

then
f (ro) =

12
α4

∀ ro ∀ n,

which is a scalar invariant that corresponds to the scalar invariants Rp (ro) = 0, Rc (ro) = α, K (ro) = α−2.
Doughty [70] has shown that the radial geodesic acceleration a of a point in a manifold described by a line-

element with the form of eq. (13) is given by,

a =

√
−g11

(
−g11

)
|g00,1 |

2g00

.

Using metric (20) once again gives,
a =

α

R
3
2
c (r)

√
Rc (r)− α

.

Now,
lim

r→r±o

Rp (r) = 0, lim
r→r±o

Rc (r) = α,

and so
r → r±o ⇒ a →∞ ∀ ro ∀ n.

According to metric (20) there is no possibility for Rc ≤ α.
In the case of eq. (1), for which ro =α =2m, n =1, r > α, the acceleration is,

a =
2m

r
3
2
√

r − 2m
.

which is infinite at r =2m. But the usual unproven (and invalid) assumption that r in eq. (1) can go down to
zero means that there is an infinite acceleration at r =2m where, according to the Standard Model, there is no
matter! However, r can’t take values less than r = ro =2m in eq. (1), as eq. (20) shows, by virtue of the nature
of the Gaussian curvature of spherically symmetric geodesic surfaces in the spatial section associated with the
gravitational manifold and the intrinsic geometry of the line-element.

The proponents of the Standard Model admit that if 0 < r < 2m in eq. (1), the rôles of t and r are interchanged.
But this violates their construction at eq. (12), which has the fixed signature (+,−,−,−), and is therefore
inadmissible. To further illustrate this violation, when 2m < r < ∞ the signature of eq. (1) is (+,−,−,−); but if
0 < r < 2m in eq. (1), then

g00 =
(

1− 2m

r

)
is negative, and g11 = −

(
1− 2m

r

)−1

is positive.

So the signature of metric (1) changes to (−,+,−,−). Thus the rôles of t and r are interchanged. According to
Misner, Thorne and Wheeler, who use the spacetime signature (+,+,+,−),
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“The most obvious pathology at r =2M is the reversal there of the roles of t and r as timelike and
spacelike coordinates. In the region r > 2M , the t direction, ∂/∂t, is timelike (gtt < 0) and the r
direction, ∂/∂r, is spacelike (grr > 0); but in the region r < 2M , ∂/∂t, is spacelike (gtt > 0) and ∂/∂r,
is timelike (grr < 0).

“What does it mean for r to ‘change in character from a spacelike coordinate to a timelike one’? The
explorer in his jet-powered spaceship prior to arrival at r =2M always has the option to turn on his
jets and change his motion from decreasing r (infall) to increasing r (escape). Quite the contrary in
the situation when he has once allowed himself to fall inside r =2M . Then the further decrease of r
represents the passage of time. No command that the traveler can give to his jet engine will turn back
time. That unseen power of the world which drags everyone forward willy-nilly from age twenty to forty
and from forty to eighty also drags the rocket in from time coordinate r =2M to the later time coordinate
r =0. No human act of will, no engine, no rocket, no force (see exercise 31.3) can make time stand
still. As surely as cells die, as surely as the traveler’s watch ticks away ‘the unforgiving minutes’, with
equal certainty, and with never one halt along the way, r drops from 2M to 0.

“At r =2M , where r and t exchange roles as space and time coordinates, gtt vanishes while grr is
infinite.”

Chandrasekhar [24] has expounded the same claim as follows,

“There is no alternative to the matter collapsing to an infinite density at a singularity once a point of
no-return is passed. The reason is that once the event horizon is passed, all time-like trajectories must
necessarily get to the singularity: ‘all the King’s horse and all the King’s men’ cannot prevent it.”

Carroll [50] also says,

“This is worth stressing; not only can you not escape back to region I, you cannot even stop yourself
from moving in the direction of decreasing r, since this is simply the timelike direction. (This could have
been seen in our original coordinate system; for r < 2GM , t becomes spacelike and r becomes timelike.)
Thus you can no more stop moving toward the singularity than you can stop getting older.”

Vladmimirov, Mitskiévich and Horský [71] assert,

“For r < 2GM/c2, however, the component goo becomes negative, and grr , positive, so that in this
domain, the role of time-like coordinate is played by r, whereas that of space-like coordinate by t. Thus
in this domain, the gravitational field depends significantly on time ( r) and does not depend on the
coordinate t.

To amplify this, set t = r∗ and r = t∗, and so for 0 < r < 2m, eq. (1) becomes,

ds2 =
(

1− 2m

t∗

)
dr∗2 −

(
1− 2m

t∗

)−1

dt∗2 − t∗2
(
dθ2 + sin2 θdϕ2

)
,

0 < t∗ < 2m.

But this is now a time-dependent metric since all the components of the metric tensor are functions of the
timelike t∗, and so this metric bears no relationship to the original time-independent problem to be
solved [35, 46]. In other words, this metric is a non-static solution to a static problem: contra hyp! Thus, in
eq. (1), 0 < r < 2m is meaningless, as eqs. (20) demonstrate.

Nobody has ever found a black hole anywhere because nobody has found an infinitely dense point-mass singu-
larity and nobody has found an event horizon.

“Unambiguous observational evidence for the existence of astrophysical black holes has not yet been
established. [28]

All claims for detection of black holes are patently false.
It has recently been admitted by astronomers [72] at the Max Planck Institute for Extraterrestrial Physics that,
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(a) Nobody has ever found a black hole, despite the numerous claims for their discovery;

(b) The infinitely dense point-mass singularity of the alleged black hole is nonsense;

(c) The alleged black hole has no escape velocity, despite the claims of the astrophysical scientists;

(d) They were until very recently informed, unaware of Schwarzschild’s actual solution.

The LIGO project and its international counterparts have not detected gravitational waves [73]. They are
destined to detect nothing. Furthermore, the Lense-Thirring or ‘frame dragging’ effect was not detected by the
Gravity Probe B and NASA has terminated further funding of that project [74].

IX. Three-Dimensional Spherically Symmetric Metric Manifolds - First Principles

To complete the purely mathematical foundations of this paper, the differential geometry expounded in the
foregoing is now developed from first principles.

Following the method suggested by Palatini, and developed by Levi-Civita [30], denote ordinary Euclidean
3-space by E3. Let M3 be a 3-dimensional metric manifold. Let there be a one-to-one correspondence between all
points of E3 and M3. Let the point O ∈ E3 and the corresponding point in M3 be O′. Then a point transformation
T of E3 into itself gives rise to a corresponding point transformation of M3 into itself.

A rigid motion in a metric manifold is a motion that leaves the metric d`
′2 unchanged. Thus, a rigid motion

changes geodesics into geodesics. The metric manifold M3 possesses spherical symmetry around any one of its
points O′ if each of the ∞3 rigid rotations in E3 around the corresponding arbitrary point O determines a rigid
motion in M3.

The coefficients of d`
′2 of M3 constitute a metric tensor and are naturally assumed to be regular in the region

around every point in M3, except possibly at an arbitrary point, the centre of spherical symmetry O′ ∈M3.
Let a ray i emanate from an arbitrary point O ∈ E3. There is then a corresponding geodesic i′ ∈ M3 issuing

from the corresponding point O′ ∈ M3. Let P be any point on i other than O. There corresponds a point P ′ on
i′ ∈M3 different to O′. Let g′ be a geodesic in M3 that is tangential to i′ at P ′.

Taking i as the axis of ∞1 rotations in E3, there corresponds ∞1 rigid motions in M3 that leaves only all the
points on i′ unchanged. If g′ is distinct from i′, then the ∞1 rigid rotations in E3 about i would cause g′ to occupy
an infinity of positions in M3 wherein g′ has for each position the property of being tangential to i′ at P ′ in the
same direction, which is impossible. Hence, g′ coincides with i′.

Thus, given a spherically symmetric surface Σ in E3 with centre of symmetry at some arbitrary point O ∈ E3,
there corresponds a spherically symmetric geodesic surface Σ′ in M3 with centre of symmetry at the corresponding
point O′ ∈M3.

Let Q be a point in Σ ∈ E3 and Q′ the corresponding point in Σ′ ∈ M3. Let dσ2 be a generic line element in
Σ issuing from Q. The corresponding generic line element dσ′2 ∈ Σ′ issues from the point Q′. Let Σ be described
in the usual spherical-polar coordinates r, θ, ϕ. Then

dσ2 = r2(dθ2 + sin2 θdϕ2), (1.1)

r = |OQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence also Q′ in Σ′. Therefore, θ and ϕ can be considered to
be curvilinear coordinates for Q′ in Σ′ and the line element dσ′ ∈ Σ′ will also be represented by a quadratic form
similar to (1.1). To determine dσ′, consider two elementary arcs of equal length, dσ1 and dσ2 in Σ, drawn from the
point Q in different directions. Then the homologous arcs in Σ′ will be dσ′1 and dσ′2, drawn in different directions
from the corresponding point Q′. Now dσ1 and dσ2 can be obtained from one another by a rotation about the axis
OQ in E3, and so dσ′1 and dσ′2 can be obtained from one another by a rigid motion in M3, and are therefore also
of equal length, since the metric is unchanged by such a motion. It therefore follows that the ratio dσ′

dσ is the same
for the two different directions irrespective of dθ and dϕ, and so the foregoing ratio is a function of position, i.e. of
r, θ, ϕ. But Q is an arbitrary point in Σ, and so dσ′

dσ must have the same ratio for any corresponding points Q and
Q′. Therefore, dσ′

dσ is a function of r alone, thus

dσ′

dσ
= H(r),
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and so
dσ

′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2 θdϕ2), (1.2)

where H(r) is a priori unknown. For convenience set Rc = Rc(r) = H(r)r, so that (1.2) becomes

dσ
′2 = R2

c(dθ2 + sin2 θdϕ2), (1.3)

where Rc is a quantity associated with M3. Comparing (1.3) with (1.1) it is apparent that Rc is to be rightly
interpreted in terms of the Gaussian curvature K at the point Q′, i.e. in terms of the relation K = 1

R2
c

since the
Gaussian curvature of (1.1) is K = 1

r2 . This is an intrinsic property of all line elements of the form (1.3) [30].
Accordingly, Rc, the inverse square root of the Gaussian curvature, can be regarded as the radius of Gaussian
curvature. Therefore, in (1.1) the radius of Gaussian curvature is Rc = r. Moreover, owing to spherical symmetry,
all points in the corresponding surfaces Σ and Σ′ have constant Gaussian curvature relevant to their respective
manifolds and centres of symmetry, so that all points in the respective surfaces are umbilics.

Let the element of radial distance from O ∈ E3 be dr. Clearly, the radial lines issuing from O cut the surface
Σ orthogonally. Combining this with (1.1) by the theorem of Pythagoras gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2 θdϕ2). (1.4)

Let the corresponding radial geodesic from the point O′ ∈ M3 be dRp. Clearly the radial geodesics issuing from
O′ cut the geodesic surface Σ′ orthogonally. Combining this with (1.3) by the theorem of Pythagoras gives the line
element in M3 as,

d`
′2 = dR2

p + R2
c(dθ2 + sin2 θdϕ2), (1.5)

where dRp is, by spherical symmetry, also a function only of Rc. Set dRp =
√

B(Rc)dRc, so that (1.5) becomes

d`
′2 = B(Rc)dR2

c + R2
c(dθ2 + sin2 θdϕ2), (1.6)

where B(Rc) is an a priori unknown function.
Expression (1.6) is the most general for a metric manifold M3 having spherical symmetry about some arbitrary

point O′ ∈M3.
Considering (1.4), the distance Rp = |OQ| from the point at the centre of spherical symmetry O to a point

Q ∈ Σ, is given by

Rp =
∫ r

0

dr = r = Rc.

Call Rp the proper radius. Consequently, in the case of E3, Rp and Rc are identical, and so the Gaussian curvature
of the spherically symmetric geodesic surface containing any point in E3 can be associated with Rp, the radial
distance between the centre of spherical symmetry at the point O ∈ E3 and the point Q ∈ Σ. Thus, in this case,
K = 1

R2
c

= 1
R2

p
= 1

r2 . However, this is not a general relation, since according to (1.5) and (1.6), in the case of M3,

the radial geodesic distance from the centre of spherical symmetry at the point O′ ∈ M3 is not the same as the
radius of Gaussian curvature of the associated spherically symmetric geodesic surface, but is given by

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r) =

∫ r

0

√
B(Rc(r))

dRc(r)
dr

dr,

where Rc(0) is a priori unknown owing to the fact that Rc(r) is a priori unknown. One cannot simply assume
that because 0 ≤ r < ∞ in (1.4) that it must follow that in (1.5) and (1.6) 0 ≤ Rc(r) < ∞. In other words, one
cannot simply assume that Rc(0) = 0. Furthermore, it is evident from (1.5) and (1.6) that Rp determines the radial
geodesic distance from the centre of spherical symmetry at the arbitrary point O′ in M3 (and correspondingly so
from O in E3) to another point in M3. Clearly, Rc does not in general render the radial geodesic length from the
point at the centre of spherical symmetry to some other point in a metric manifold. Only in the particular case of
E3 does Rc render both the radius of Gaussian curvature of an associated spherically symmetric surface and the
radial distance from the point at the centre of spherical symmetry, owing to the fact that Rp and Rc are identical
in that special case.
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It should also be noted that in writing expressions (1.4) and (1.5) it is implicit that O ∈ E3 is defined as being
located at the origin of the coordinate system of (1.4), i.e. O is located where r = 0, and by correspondence O′

is defined as being located at the origin of the coordinate system of (1.5) and of (1.6); O′ ∈ M3 is located where
Rp =0. Furthermore, since it is well known that a geometry is completely determined by the form of the line
element describing it [33], expressions (1.4), (1.5) and (1.6) share the very same fundamental geometry because
they are line elements of the same metrical groundform.

Expression (1.6) plays an important rôle in Einstein’s alleged gravitational field.

X. Conclusions

“Schwarzschild’s solution” is not Schwarzschild’s solution. Schwarzschild’s actual solution does not predict black
holes. The quantity ‘r’ appearing in the so-called “Schwarzschild solution” is not a distance of any kind in the
associated manifold - it is the inverse square root of the Gaussian curvature of the spherically symmetric geodesic
surface in the spatial section. This simple fact completely subverts all claims for black holes.

The generalisation of Minkowski spacetime to Schwarzschild spacetime, via Ric = 0, is not a generalisation of
Special Relativity. Neither Einstein’s ‘Principle of Equivalence’ nor his laws of Special Relativity can manifest in a
spacetime that by construction contains no matter. Therefore, Ric = 0, a spacetime that by construction contains
no matter, violates Einstein’s ‘Principle of Equivalence’. Similarly, Ric = λgµν , a spacetime that by construction
contains no matter, also violates Einstein’s ‘Principle of Equivalence’ and his laws of Special Relativity, and so
cannot describe a gravitational field.

The Riemann tensor scalar curvature invariant (the Kretschmann scalar) is not an independent curvature
invariant - it is a function of the Gaussian curvature of the spherically symmetric geodesic surface in the spatial
section. Gaussian curvature is an intrinsic geometric property of a surface, determined from the components and
their derivatives of the metric tensor of the First Fundamental Form for a surface.

Despite claims for discovery of black holes, nobody has ever found a black hole; no infinitely dense point-mass
singularity and no event horizon have ever been found. There is no physical evidence for the existence of infinitely
dense point-masses. It takes an infinite amount of observer time to verify the presence of an event horizon, but
nobody has been and nobody will be around for an infinite amount of time. No observer, no observing instruments,
no photons, no matter can be present in a spacetime that by construction contains no matter. The black hole is
fictitious and so there are no black hole generated gravitational waves. The international search for black holes
and their gravitational waves is ill-fated.

The Michell-Laplace dark body is not a black hole. Newton’s theory of gravitation does not predict black holes.
General Relativity does not predict black holes. Black holes were spawned by (incorrect) theory, not by observation
[2, 3, 4, 7, 28]. The search for black holes is destined to find none.

Curved spacetimes without material cause violate the physical principles of General Relativity. There is no
experimental evidence supporting the notion of gravitational fields generated without material cause.

No celestial body has ever been observed to undergo irresistible gravitational collapse. There is no laboratory
evidence for irresistible gravitational collapse. Infinitely dense point-mass singularities howsoever formed cannot
be reconciled with Special Relativity, i.e. they violate Special Relativity, and therefore violate General Relativity.

General Relativity cannot account for the simple experimental fact that two fixed bodies will approach one
another upon release. There are no known solutions to Einstein’s field equations for two or more masses and there
is no existence theorem by which it can even be asserted that his field equations contain latent solutions for such
configurations of matter. All claims for black hole interactions are invalid.

Einstein’s gravitational waves are fictitious; Einstein’s gravitational energy cannot be localised; so the interna-
tional search for Einstein’s gravitational waves is destined to detect nothing. No gravitational waves have been
detected. Einstein’s pseudo-tensor is meaningless and linearisation of Einstein’s field equations inadmissible. And
the Lense-Thirring effect was not detected by the Gravity Probe B.

Einstein’s field equations violate the experimentally well-established usual conservation of energy and momen-
tum, and therefore violate the experimental evidence.
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