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SUMMARY 
 
In this essay I show how one can use easy maths to analyse planetary orbits, which are elliptical.  
I also present an example of how one can use “the NASA method” to calculate planetary orbits, based on 
information in an interesting NASA document. 
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INTRODUCTION 
 
Recently I participated in a very interesting and spirited discussion, by email, regarding planetary orbits.  I 
learned that these are not nearly as simple  
as I had thought, and that there are several common errors which the average scientist might make when 
dealing with them.  Sadly, these errors are  
due to the fact that some textbooks and internet-sites give incorrect information re planetary orbits.  The 
purpose of this essay is to possibly save others the  
aggravation of making a common error in this context, and/or of having long and annoying arguments re this.  
 
 
Part 1:  CONSERVATION OF ANGULAR MOMENTUM 
 
When two objects orbit around each other, the orbital angular momentum of each is constant, and does not 
change unless there is an input of energy  
from outside the orbiting system, such as if an asteroid collides with a moon or planet. 
 
This is easy to prove using Kepler's 2nd law, which says  
that the radius-vector of an orbiting object sweeps through equal areas during equal times.  One visualizes a 
very narrow triangle formed by two radius-vectors  
separated by a small time  dt.  The area of such a triangle is  A  =  1/2r.r.w.dt,  where "r" is radius and "w" is 
angular velocity.  Note that the expression "r.w.dt"  
represents the short distance which the planet moves during the time "dt." 
If "A" and "dt" are constant, (which is another way to say "equal areas during equal times"), then  r.r.w  =  r.v 
must also be constant.  
{In German, "also" means "therefore"} 
Because angular momentum is defined as  ang.mom.  =  m.v.r  =  m.r.r.w,  this means that angular 
momentum is constant. 
 
 
Part 2:  DO CENTRIFUGAL AND GRAVITATIONAL FORCES BALANCE EXACTLY ?? 
 
There is much confusion re this question, because some textbooks and internet-sites give incorrect 
explanations.  However, using only some  



very simple maths, one can demonstrate that the two forces exactly balance at only two points in the orbit, 
unless the orbit is perfectly circular. 
 
A basic equation which defines an elliptical orbit is: 
h/r  =  1 + e.cos(theta)     (Eqn. 2.1),        where "h" is the length of the semi-latus rectum, a constant;  "r" is the 
length of the radius vector  
between sun and planet, which varies unless the orbit is perfectly circular;  "e" is the eccentricity of the orbit, a 
constant;  
and "theta" is the angle between the radius vector and the major axis of the orbit, a variable [Ref.#1]. 
 
Eqn. 2.1 implies that:      cos(theta)  =  (h/r - 1) / e        (Eqn. 2.1a);  
It also implies that:    r  =  h / [1 + e.cos(theta)]       (Eqn. 2.1b),  
and   r(perogee) = h / ( 1 + e )          (Eqn. 2.1c); 
 
Plus, if one differentiates both sides of Eqn. 2.1 with respect to time, one obtains:  
     - (h/r.r).dr/dt  =  - e.sin(theta).w,       where  "w" is angular velocity [d(theta)/dt] and "t" is time.  
Note that one can drop the two minus-signs, and move "h/r.r" to the right side, to give:  
   
     dr/dt  =  [(r.r.e/h).sin(theta)].w               (Eqn. 2.2); 
 
Plus, Eqn. 2.2 implies that:  w  =  angular velocity  =  [ h / r.r.e.sin(theta) ].dr/dt          (Eqn. 2.2a). 
 
Equation 2.3 is just simply the definition of the angular momentum of an orbiting planet: 
     L  =  m.[r.w].r         Eqn. 2.3,      where "L" is angular momentum.  Note that "r.w" is the transverse velocity,  
(which is perpendicular to the radius vector), as distinct from the total [i.e., "instantaneous"] velocity (which is 
tangential to the orbit).  
If the orbit is nearly circular, then these two velocities are nearly equal.  In a more eccentric orbit, such as that 
of a comet,  
there might be a considerable difference between transverse velocity and total velocity. 
 
Eqn. 2.3 implies that    r.r.   =   L / m.w        (Eqn. 2.3a); 
 
Combining  Eqns. 2.2 and 2.3a  gives:     dr/dt  =  [L / h.m.w].[e.sin(theta).w]  =  (L.e/m.h).sin(theta),  
which implies:   dr/dt  =  [(L.e)/(m.h)].sin(theta)      (Eqn. 2.4); 
 
Differentiating again with respect to time gives a second-derivative expression: 
    d2r/dt2  =  [(L.e)/(m.h)].cos(theta).w      (Eqn. 2.4a); 
 
Combining  Eqns. 2.4a + 2.1a,  and simplifying, one obtains:  
          m.(d2r/dt2)   =   [L/r].w  -  [L/h].w      (Eqn. 2.5); 
 
Multiplying both numerator and denominator on the right side by  "L"  gives: 
              m.(d2r/dt2)   =   [L.L/(L.r)].w  -  [L.L/(L.h)].w      (Eqn. 2.5a); 
 
Combining Eqns. 2.3 and 2.d5a,  and simplifying:      m.(d2r/dt2)   =   L.L/(m.r.r.r)  -  L.L/(m.r.r.h)       (Eqn. 
2.6); 
 
The expression on the left side represents the planet's mass multiplied by an acceleration, the acceleration 
given by the 2nd derivative  



of the radial distance, i.e., the radius, between the planet and its sun.  It's the net force between the two orbiting 
objects.  
One can visualize it as causing the length of the radius to increase and decrease as the planet moves along its 
non-circular orbit.  
On the right side are expressions for centrifugal force and gravitational force respectively;  
 the gravitational force has a minus sign because it's attractive;  i.e., because it tends to decrease the radius. 
 
Inspection of Eqn.6 reveals that the net force is zero only when the two forces are equal, which happens only  
when   r  =  h,  i.e., at the two semi-latus rectum points. 
 
This analysis shows that the gravitational force and the centrifugal force exactly balance each other at only two 
points  
on an elliptical orbit, despite the fact that some textbooks say that they always exactly balance, as if the orbits 
were perfect circles,  
which they are not.  Worse yet, some textbooks say that centrifugal force is not a real force.  
 
Note that this result is somewhat counter-intuitive:  
until I looked at the maths, I was arguing that the two forces balance at perigee and apogee. 
 
 
Part 3:  THE VIS-VIVA EQUATION 
 
This equation gives the total [i.e., "instantaneous"] velocity of the smaller body as a function of the mass of the 
larger body and  
the semi-major axis of the orbit, both constants, and the radius, which varies as the planet goes around its 
orbit.  
Again, one can use easy maths to derive it. 
 
Because of the conservation of energy throughout the orbit, one can say that the total energy of the orbiting 
system is always equal to the sum of  
the kinetic energy and the potential energy, using the convention that the potential energy is always negative, 
and therefore has a minus-sign in front of it: 
      V.V / 2  -  GM / r   =   v(perigee).v(perigee) / 2  -  GM / r(perigee)   =   v(apogee).v(apogee) / 2  -  GM / 
r(apogee),    (Eqn. 3.1). 
Note that all the velocities are total velocities, tangential to the orbit. 
 
One can rearrange this to say that   
v(apogee).v(apogee) / 2  -  v(perigee).v(perigee) / 2  =  GM / r(apogee)  -  GM / r(perigee)       (Eqn. 3.2),  
where "G" is Newton's gravitational constant and "M" is the mass of the larger object. 
 
Because total velocity and radius are perpendicular at perigee and apogee, the conservation of angular 
momentum requires that  
v(perigee).r(perigee)  =  v(apogee).r(apogee)  =   constant. 
 
So  v(perigee)  =  v(apogee).[r(apogee)/r(perigee)]         (Eqn. 3.3). 
 
Combining eqns. 3.2 and 3.3 gives: 
   (1/2).v(apogee).v(apogee).[ 1  -  r(apogee).r(apogee) / r(perigee).r(perigee)]   =  GM / r(apogee)  -  GM / 
r(perigee)   (Eqn. 3.4);  
This implies:  



{(1/2).[ r(perigee).r(perigee)  -  r(apogee).r(apogee) ] / r(perigee).r(perigee)}.v(apogee).v(apogee)  =   GM / 
r(apogee)  -  GM / r(perigee),  
which implies:  
(1/2).v(apogee).v(apogee)   =   GM.{ [r(perigee) - r(apogee)] / r(perigee).r(apogee) }.{r(perigee).r(perigee) / 
[r(perigee).r(perigee) - r(apogee).r(apogee)]} 
   =   GM.r(perigee) / {r(apogee).[(r(perigee) + r(apogee)]}; 
 
From the geometry of an ellipse:  r(apogee) + r(perigee)  =  2.a,  where "a" is the semi-major axis.  
So:   v(apogee).v(apogee) / 2   =    (GM/2a).r(perigee) / r(apogee)   =   (GM/2a).[2a - r(apogee)] / r(apogee) 
=  (GM/r(apogee)) - (GM/2a)  (Eqn. 3.4a); 
 
Combining Eqns. 3.1 and 3.4a gives:  Etotal  =   V.V / 2  -  GM / r  =  -GM/2a,  which leads to: 
 
   V.V   =   (GM/r - GM/2a).2   =   GM.(2/r - 1/a),   which is the vis-viva equation, and enables one to calculate 
the instantaneous velocity of a planet  
at any point on its orbit, if one knows the radius [r].  
 
 
Part 4:  THE "NASA METHOD" 
 
One of the peculiarly interesting characteristics of elliptical orbits is that one can express the 
instantaneous-velocity vector as  
the sum of two vectors, each of whose length is constant.  One of these [Vd] always points in the same 
direction,  
perpendicular to the major axis of the ellipse, and in the direction in which the planet moves on its nearest 
approach to its sun.  
The other velocity vector [Vb] is always perpendicular to the radius vector, so that it rotates in a circle as the 
planet does an orbit. 
See the illustration on page 115, also called page III-6, of Ref.2, which is a NASA document.  
See also Figures 1 and 2, above. 
 
To calculate the lengths of these two components of the total velocity, one can use the fact that the two vectors 
align to the same  
orientation at the perigee and apogee points, when the planet is nearest and farthest from its sun.  Thus:  
      Vb  +  Vd  =  v(perigee),  and  Vb - Vd  =  v(apogee);        Solving these two equations simultaneously 
gives:  
Vp  =  [v(perigee) + v(apogee)] / 2   (Eqn. 3.5a),    and    Vd  =  [v(perigee) - v(apogee)] / 2    (Eqn. 3.5b); 
 
Part 4a:  the vector-sum triangle used in the NASA method 
Note that one can construct a triangle which is composed of three velocity vectors:  the total velocity [Vtotal] 
and the two component vectors [Vb and Vd],  
described above.  Because none of these is perpendicular to either of the others, one uses the "cosine rule" in 
the calculation:  
     Vtotal  =  the square root of [ Vb.Vb + Vd.Vd - 2.Vb.Vd.cos(phi) ]     (Eqn. 3.6), 
where "phi" is the angle opposite the vector "Vtotal" in the triangle.  Note that "Vtotal" is tangential to the orbit, 
"Vb" is perpendicular  
to the radius vector, and "Vd" is perpendicular to the major axis, as illustrated in Figures 1 and 2, above, and 
in the NASA document [Ref.2]. 
 



Careful analysis of this illustration reveals that this angle "phi" is equal to 180 degrees minus the angle "theta" 
---  
which is the angle between the radius vector and the major axis, as described in Part 2, above.  This means 
that  sin(phi)  =  sin(theta)     (Eqn. 3.7a), 
and  cos(phi)  =  - cos(theta)     (Eqn. 3.7b).  
 
One can now combine Eqns. 2.1a and 3.7b, to obtain:   cos(theta)  =  (h/r - 1) / e    =  - cos(phi);    so 
cos(phi)  =  (1 - h/r) / e     (Eqn. 3.8). 
One can now use the "cosine rule" (Eqn. 3.5) to calculate Vtotal:   I.e., combining Eqns. 3.5 and 3.7 gives:  
    Vtotal  =  the square root of [ Vb.Vb + Vd.Vd - 2.Vb.Vd.[(1 - h/r) / e]     (Eqn. 3.8a),  
where  h  =  b.b/a  ("b" is semi-minor axis, "a" is semi-major axis),  and  e  is defined as  the square root of [ 1 
- b.b/a.a ];  
{Please see Appendix 1 for a derivation of the above expression for "h"}  
 
Referring to Figure 2, one can see that  dr/dt, the rate of change of the length of the radius, is equal to 
Vtotal.[cos(90 - gamma)]  =  Vtotal.[sin(gamma)]  (Eqn. 3.9),  
where gamma is the angle in the triangle which is opposite the velocity vector Vd.  Note that the illustration on 
page 115, also called page III-6, in the NASA document,  
also refers to this angle as gamma. 
 
One can use the "sine rule" to calculate the sine of this angle gamma  
as:   sin(gamma)  =  sin(phi).[Vd/Vtotal]      (Eqn. 3.9a).   Note that  sin(gamma)  =  cos(90 - gamma),  so 
one has:  
         cos(90 - gamma)  =  sin(gamma)  =  sin(phi).[Vd/Vtotal]       (Eqn. 3.9b);  
So one can say that  dr/dt  =  Vtotal.sin(phi).[Vd/Vtotal]  =  Vd.sin(phi)     (Eqn. 3.9c). 
Using Eqn. 3.6a and the trigonometric identity  sin(any angle)  =  square root of [1 - cos(any angle).cos(any 
angle)],  one obtains:  
     sin(phi)  =  sin(theta)  =  square root of {1 - [cos(theta)]^2};   Given that  cos(theta)  =  (h/r - 1) / e  [Eqn. 
2.1a],  one obtains:  
sin(phi)  =  square root of {1 - [(h/r - 1) / e]^2},  which leads to, from Eqn. 3.9a: 
 
sin(gamma)  =  [ square root of {1 - [(h/r - 1) / e]^2} ].[Vd/Vtotal];   combining this with Eqn. 3.9, one sees 
that:  
 
dr/dt  =  V(total).[ square root of {1 - [(h/r - 1) / e]^2} ].[Vd/Vtotal]}  =  Vd.[ square root of {1 - [(h/r - 1) / 
e]^2} ]    (Eqn. 3.10). 
 
So:  if one wants to know how quickly the length of the radius vector is changing at any point in the orbit, then 
one can use Eqn. 3.10;  note that  
one can use  h = b.b/a [see Appendix 1]  and  e = sq.rt.[1 - b.b/a.a]  [by definition] to show that the numeric 
value of  1 - [(h/r - 1) / e]^2  is zero at perigee;  
this means that, as one would expect,  dr/dt = zero  at perigee.  Likewise at apogee. 
 
 
Part 5:  SHOWING THAT v(transverse) IS THE CORRECT VELOCITY TO CALCULATE ANGULAR 
MOMENTUM 
 
One can extend these simple maths to show that transverse velocity is in fact the correct velocity to use when 
calculating angular momentum.  



The transverse velocity [v]  is equal to  r.[d(theta)/dt]  =  r.w, the radius vector multiplied by its angular 
velocity, each of which varies as it moves along its orbit. 
Note that the transverse velocity at most points in a non-circular orbit is not the same as the total velocity, 
because the two are equal only at perigee and apogee,  
because v is perpendicular to the radius vector only at those two points. 
 
One can calculate the system's angular momentum if one knows the velocity and radius at perigee.  From Eqn. 
2.1b, one can calculate the radius at perigee as:  
r(perigee) = h / [(1+e.cos(0)] = h/(1+e).  But what about v(perigee) ??  At this point in the analysis it becomes 
more convenient to use numerical, rather than analytical,  
methods.  I.e., one can sketch a particular typical planetary orbit, as in Figure 1, below, whose semi-major axis 
[a] is 11 million kilometers [11 x 10^9 m],  
and whose semi-minor axis [b] is 7 million kilometers [7 x 10^9 m].  From a and b, and the definition of 
eccentricity [e = sq.rt.{1 - (b.b)/(a.a)}],  
one can calculate that the eccentricity [e] of the orbit is 0.771;  from h = b.b/a [see Appendix 1], its semi-latus 
rectum is 4.455 x 10^9 m,  
its r(perigee) is 2.515 x 10^9 m,  and its r(apogee) is 19.485 x 10^9 m.  One can use Eqn. 2.1c to calculate the 
last two numeric values.  
 
After sketching this particular elliptical orbit, (and calculating its "vital statistics"), one can now choose a random 
v(perigee) for it, such as 1000 km/sec = 10^6 m/sec.  
Plus, because of conservation of angular momentum, one can say that r(perigee).v(perigee) = 
r(apogee).v(apogee);  given the r(perigee) and r(apogee) calculated  
above, and the randomly chosen v(perigee) = 1.0 x 10^6 m/sec, one can calculate that v(apogee) = 0.129 x 
10^6 m/sec.  Using Eqns. 3.5a and 3.5b, one can  
calculate numeric values for Vb and Vd:  Vb = 0.565 x 10^6 m/sec  and  Vd = 0.435 x 10^6 m/sec.  These are 
the two components of total velocity, as described above,  
and in the NASA document [Ref.2]. 
 
From Eqn. 3.8a, one has an expression for V(total):  
    Vtotal  =  the square root of [ Vb.Vb + Vd.Vd - 2.Vb.Vd.[(1 - h/r) / e]     (Eqn. 3.8a),  
Using this, one should be able to calculate V(total) at perigee and verify that it does in fact equal v(perigee), 
which we chose to be 10^6 m/sec.  
Inserting into Eqn. 3.8a   r = r(perigee) = 2.515 x 10^9 m, Vb = 0.565 x 10^6 m/sec, Vd = 0.435 x 10^6 m/sec, h 
= 4.455 x 10^9 m, and e = 0.771,  
one obtains  V(total) = 1.0 x 10^6 m/sec, verifying that NASA's method works.  
 
{[ If one wants to know the mass of the larger object in the system, one can use the vis-viva equation [Part 3, 
above] to calculate the numeric value of  
GM, from which one can calculate M ]} 
 
Using v(perigee) = 1.0 x 10^6 m/sec, the system's angular momentum is  
given by:   L = (m).v(perigee).r(perigee) = (m).(10^6 m/sec).(2.515 x 10^9 m) = (m).(2.515 x 10^(15) m.m/sec).  
 
Finally, to show that the transverse velocity is the correct velocity to calculate angular momentum, one can 
choose a random point on the orbit,  
and calculate the transverse velocity there, which is given by v(transverse) = r.w, where w is angular velocity. 
Using (m).v(transverse).(r) = angular momentum,  
one can then calculate angular momentum in this alternative way, and compare the result with the angular 
momentum calculated above. 



 
To do this, one needs to develop an equation for angular velocity w.  From Eqn. 2.2a, one has: 
 w  =  angular velocity  =  [ h / r.r.e.sin(theta) ].dr/dt          (Eqn. 2.2a). 
And from Eqn. 3.10:  dr/dt  =  Vd.{square root of {1 - [(h/r - 1) / e]^2}}    (Eqn. 3.10). 
And from Eqn. 2.1a:   cos(theta)  =  (h/r - 1) / e        (Eqn. 2.1a);  
Putting that all together gives:  w = [h / r.r.e.sin(theta)].Vd.{sq.rt. of {1 - [cos(theta)]^2}}. 
Because  sin(any angle) = sq.rt.of {1 - cos(any angle)^2}, one can simplify the above to say: 
    w  =  angular velocity  =  (h.Vd) / (r.r.e);  
Using this, one can say that  ang.mom. = m.[r.w].r = m.h.Vd / e = m.(4.455 x 10^9 m).(0.435 x 10^6 m/sec) / 
(0.771) =  
(m).(2.514 x 10^15 m.m/sec), which agrees with the numeric value for angular momentum calculated above. 
 
 
CONCLUSION 
 
One can use easy maths to show the truth regarding several common points of confusion re details of 
planetary orbits, which are elliptical.  One can use simple geometry to demonstrate that angular 
momentum of a planetary orbit does not change as it moves along the orbit, and that two forces are at 
play, (gravitational and centrifugal), which operate along the same line, and are equal  
at only two points on the orbit, unless the orbit is perfectly circular. 
 
Plus, one can use these same easy maths to study the methods which NASA uses to track real 
satellites, as an interesting NASA document shows. 
 
 
Appendix 1:  Derivation of h = b.b / a 
 
Please refer to Figure 3 (above) for this derivation.  
This calculation uses the well known fact that, for an ellipse, one can draw two straight lines, from any point on 
the ellipse  
to each of the two focuses, and that the sum of two such lines, connecting the two focuses to any point on the 
ellipse, is  
equal to the major axis, i.e., to the sum of the two semi-major axes, 2a.  If one chooses to draw the two lines 
from a point which  
is even with the center-point of the ellipse, so that the two lines are each the same length, then each is equal to 
the length  
of a semi-major axis.  If one now draws a semi-minor axis, one has a right triangle whose hypotenuse is equal 
to a,  
and whose one side is equal to b.  So by simple geometry the other side is equal to sq.rt.(a.a - b.b).  Note that 
this  
other side connects a focus and the center-point of the ellipse.  So one can say that the distance between the 
two foci is  
equal to twice this length, namely 2.{sq.rt.(a.a - b.b)}. 
 
One can now construct another triangle, whose base is the line between the two foci, described above, and 
whose second side connects  
the principle focus and a semi-latus rectum point, and whose third side, the hypotenuse, is a line which 
connects the other focus to the  
same semi-latus rectum point.  One knows that the length of the sum of the hypotenuse and the short side is 
equal to the length of the  



major axis, i.e., 2a, as described above.  One also knows that the length of the short line is equal to that of the 
semi-latus rectum, i.e., h.  
So one knows that the length of the hypotenuse is 2a - h.  So, again using simple geometry, one has: 
    (2a - h)^2  =  h^2 + [ 2.{sq.rt.(a.a - b.b) ]^2 ... Solving this for h gives  h = (b.b / a). 
 
Please note that this, and many other relationships between the parameters which describe an ellipse, are 
given in Table 1 of Ref.2,  
which starts on page 125, also called page III-16. 
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